BEAVERDAM CREEK STREAM RESTORATION PROJECT # ANNUAL MONITORING REPORT FOR 2008-2009 (YEAR 3) **Project Number: D05016-1** Submitted to: NC Ecosystem Enhancement Program 2728 Capital Blvd, Suite 1H 103 Raleigh, NC 27604 December, 2009 Prepared for: River Works, Incorporated 8000 Regency Parkway Suite 200 Cary, NC 27518 Prepared by: Michael Baker Engineering, Inc. 1447 South Tryon St., Ste. 200 Charlotte, NC 28203 ### TABLE OF CONTENTS | TITL | E PAGE | | |---|---|--------------------------------| | TABI | LE OF CONTENTS | ••• | | EXE (| CUTIVE SUMMARY | 1 | | 1.0 | PROJECT BACKGROUND | 2 | | 1.1
1.2
1.3
1.4
1.5 | Project Location | 2 | | 2.0 | VEGETATION MONITORING | 8 | | 2.1
2.2
2.3
2.4
2.5
2.6
2.7 | Soil Data Description of Species and Monitoring Protocol | 9
9
. 10
. 12
. 12 | | | | | | 3.1
3.2
3.3
3.4
3.5
3.6
3.7 | Description of Stream Monitoring Stream Restoration Success Criteria Bankfull Discharge Monitoring Results Stream Monitoring Data and Photos Stream Stability Assessment Cross-section, Longitudinal Profile, and Bed Material Analysis Monitoring Results Areas of Concern | 13
13
14
14
16 | | 4.0 | HYDROLOGY | 17 | CONCLUSIONS AND RECOMMENDATIONS....... 18 WILDLIFE OBSERVATIONS 18 i ### **APPENDICES** 5.06.0 **7.0** APPENDIX A - Project Photo Log APPENDIX B - Stream Monitoring Data APPENDIX C – As-built Plan Sheets APPENDIX D – Baseline Stream Summary for Restoration Reaches APPENDIX E – Morphology and Hydraulic Monitoring Summary – Year 3 Monitoring ## LIST OF TABLES | Table 1. | Project Mitigation Approach | |-----------|--| | Table 2. | Project Activity and Reporting History | | Table 3. | Project Contact Table | | Table 4. | Project Background | | Table 5. | Soil Data for Project | | Table 6. | Tree Species Planted | | Table 7. | Year 3 Stem Counts for Each Species Arranged by Plot | | Table 8. | Verification of Bankfull Events | | Table 9. | Categorical Stream Feature Visual Stability Assessment | | Table 10. | Comparison of Historic Rainfall to Observed Rainfall | | Table 11. | Hydrologic Monitoring Results for Year 3 | | | LIST OF FIGURES | | Figure 1. | Site Vicinity Map | | Figure 2. | Site Topographic Map | | Figure 3. | Restoration Summary Map | **Stage Recorder Locations** Historic Average vs. Observed Rainfall Figure 4. Figure 5. ### **EXECUTIVE SUMMARY** This Annual Report details the monitoring activities during the 2009 growing season on the Beaverdam Creek Stream Restoration Site ("Site"). Construction of the Site, including planting of trees, was completed in March 2007. In order to document project success, twenty-four vegetation monitoring plots, eighteen permanent cross-sections, 3,562 linear feet (LF) of longitudinal profile survey, and two automated stage recorders were installed and assessed across the restoration Site. The 2009 data represents results from the third year of vegetation and hydrologic monitoring for streams. Prior to restoration, stream and buffer functions on the Site were historically impaired as a result of heavy land timbering and subsequent aggressive farming. More recently some areas were reforested within the project site, but it continued to be actively farmed, grazed or converted to medium density residential developments. The restoration project restored/enhanced 13,203 linear feet (LF) of channelized stream on two unnamed tributaries of Beaverdam Creek: UT1 and UT2, and preserved an additional 1,641 LF of Beaverdam Creek and 962 LF of UT2 to total 15,806 LF of restored, enhanced, or preserved stream. Weather station data from the for NRCS National Climate and Water Center (Charlotte WSO AP WETS Station in Mecklenburg County – NC 1690) and the USGS Water Data for North Carolina (USGS 35090308100454 Withers Cove in Mecklenburg County, NC) were used to document precipitation amounts. For the 2008 - 2009 growing season, the total recorded rainfall in inches was less than the historical average totals. May and October were the only two months that recorded rainfall data above the historical average. Twenty-four monitoring plots that are 10 meters by 10 meters (0.025 acre) in size were used to assess survivability of the woody vegetation planted on Site. They are randomly located to represent the different zones within the project. The vegetation monitoring indicated an overall average of 475 stems per acre. The Site has met the interim vegetative success criteria goal of at least 320 stems per acre for year three and is on track for meeting final success criteria of 260 trees per acre by the end of year five. In general, dimension, pattern, profile and in-stream structures remained stable during the third growing season. 1 ### 1.0 PROJECT BACKGROUND The Beaverdam Creek site is located within the extraterritorial jurisdiction (ETJ) of the City of Charlotte, Mecklenburg County, and lies within the Catawba River Basin (Figure 1). The site lies within North Carolina Department of Water Quality (NCDWQ) sub-basin 03-08-34 and U.S. Geologic Survey (USGS) hydrologic unit 03050101170040. The recent land use of the site consists of agriculture and medium density residential development. The project involved the restoration, enhancement and preservation of 15,806 LF of stream along Beaverdam Creek (the mainstem) and two unnamed tributaries (UT1 and UT2). ### 1.1 Project Location The Beaverdam Creek sited is located approximately 3 miles southwest of the Charlotte-Douglas International Airport. The site extends from the newly constructed Interstate 485 corridor to Brown's Cove of Lake Wylie, an impounded reservoir on the Catawba River. The site can be accessed from Dixie River Road (UT1 to the north and UT2 to the south) 1.5 miles northeast of the intersection with Steele Creek Road. See Figures 1 and 2 for an overview of the project site. ### 1.2 Mitigation Goals and Objectives The specific goals for the Beaverdam Creek Restoration Project were as follows: - Preserve/Restore/Enhance 15,806 LF of stream channel. - Create geomorphically stable stream channel and floodplain conditions along UT1, UT2 and their associated tributaries within the Beaverdam Creek watershed. - Improve the local hydrology through increased groundwater recharge, groundwater storage, and hydrologic connectivity between the channel and the adjacent floodplain. - Improve water quality in the Beaverdam Creek watershed by increasing dissolved oxygen concentrations and reducing nutrient and sediment loads. - Improve aquatic and riparian terrestrial habitat through improved hydraulic and biologic diversity. ### 1.3 Project Description and Restoration Approach For analysis and design purposes, Beaverdam Creek and the two unnamed tributaries (UT1 and UT2) were subdivided into 15 individual reaches based on their hydrologic and geomorphic characteristics. The mainstem of Beaverdam Creek consists of only 1 of the 15 design reaches, where only preservation and no restoration activities were proposed. The remaining 14 reaches exist within UT1 (8 reaches) and UT2 (6 reaches). Among these 14 reaches, 12 were scheduled for restoration, the upstream reach of UT1 was scheduled for enhancement and the downstream reach of UT2 was scheduled for preservation. All reach locations are shown in Figure 3. The following describes the site's preconstruction conditions. The project extents on UT1 began at I-485 flowing from the northeast direction. UT1 was divided into 5 reaches starting in the upstream with Reach 1 and continuing downstream to Reach 5 and changing designation at tributary confluences or at significant grade breaks. The three tributary confluences were included within the design parameters on UT1 and were identified as UT1B, UT1C, and UT1D from the upstream confluence and continuing downstream. The UT2 watershed abuts the southern boundary of UT1's watershed, is bordered by Dixie River Road, and generally flows in the southwest direction. The mainstem of UT2 was divided into four reaches starting upstream at Reach 1 and continuing downstream to Reach 4. One tributary confluence, UT2A, was included within the design parameters of UT2. Reach UT2A, upstream of station 10+00, consisted only of a non-disturbance area (not for credit). The downstream section of UT2A, from a headcut at station 10+00 to its confluence at the terminus of UT2 Reach 2, was 1,138 LF with a channel slope of 1.4 percent. Preservation was proposed for reaches within the project area that were currently in stable, functioning condition and did not warrant restoration. The two reaches proposed for preservation were along the mainstem of Beaverdam and the downstream section of UT2. The reach along the mainstem of Beaverdam Creek proposed for preservation had a reach length of 1,641 LF. It began at the confluence with UT1 and extended downstream to the confluence of UT2. The reach along the mainstem of UT2 proposed for preservation had a length of 962 LF. It began immediately downstream of UT2 Reach 4 and ended at its confluence with Beaverdam Creek. Throughout most of UT1, the restoration approach accelerated the existing evolutionary process and established a natural, successionally stable, C/E-type stream channel. Additionally, soil bioengineering, structural reinforcement, and revetments were applied to promote stability immediately following construction when the stream was most vulnerable. Given the wide floodplain, relatively flat slopes, generally stable nature of the soil, and favorable growing conditions at the site, this restoration approach was an achievable goal. Removal of
the majority of invasive species and planting of native vegetative species throughout the riparian buffer complemented the channel restoration and promoted climax successional habitat. Similar to UT1, the restoration approach throughout UT2 entailed establishing a successional C/E-type stream channel while maintaining the ability to accommodate subsequent natural channel evolution towards an E-type channel, as warranted by future influences to the discharge and sediment regime. This was accomplished through application of a Priority 1 design throughout with short segments of Priority 2 design to tie into the incised channels. **Table 1. Project Mitigation Approach** | Beaverdam Creek Restoration Site: Project No. D05016-1 | | | | | | | | | | | | | | |--|-------------|---|------------|---------------------------------|---------------------|---------------------|---------------|---|--|--|--|--|--| | Project Segment or Reach ID Existing | | Existing Footage/Acre age Mitigation Type * | | Linear
Footage or
Acreage | Mitigation
Ratio | Mitigation
Units | Stationing | Comment | | | | | | | UT1 (Reach 1) | 542 | E | EI | 567 | 1.5:1 | 378 | 10+00 - 15+67 | Low slope, minimal meander and floodplain benching. | | | | | | | UT1 (Reach 2-5) | 5796 | R | P1 | 6,310 | 1:1 | 6,310 | 15+67 - 78+77 | The beginning of channel utilizes the existing wide, flat floodplain then narrows through the valley and straightens through the Duke Power easement and connects into the mainstem of Beaverdam through a wide, flat floodplain. | | | | | | | UT1B | 743 | R | P2 | 778 | 1:1 | 778 | 10+00 - 17+78 | The valley is pinched so floodplain grading will create adequate benching. | | | | | | | UT1C | 744 | R | P1 | 624 | 1:1 | 624 | 10+00 - 16+24 | Step-pool design dominated by log drops. The valley is narrow resulting minimal meander. | | | | | | | UT1D | 323 | R | P1 | 338 | 1:1 | 338 | 10+00 - 13+38 | The channel will have the appropriate belt width throughout the ample floodplain. A series of drop structures at the end of the reach will tie into UT1. | | | | | | | UT2 | 3130 | R | P1 | 3,448 | 1:1 | 3,448 | 10+00 - 44+48 | Increase sinuosity, pool development, and reestablish connection with the floodplain and construct in channel step-pools in areas where the valley is confined and steep. | | | | | | | | 00.5 | , | D 1 | 1.120 | | 1.120 | 10.00.01.00 | A step-pool channel will be constructed in the areas where the valley is confined and steep. Transition connections constructed between the constructed | | | | | | | UT2A | 886 | R | P1 | 1,138 | 1:1 | 1,138 | 10+00 - 21+38 | channel and the existing channels. | | | | | | | Beaverdam Creek
UT2 | 1641
962 | P
P | | 1,641
962 | 1:5
1:5 | 328
192 | - | - | | | | | | | - | ear ft of c | | | | 1.3 | 192 | - | | | | | | | | Mitigation U | | | | 13,534 | | | | | | | | | | ### 1.4 Project History and Background The chronology of the Beaverdam Creek Restoration Project is presented in Table 2. The contact information for all designers, contractors, and relevant suppliers is presented in Table 3. Relevant project background information is presented in Table 4. Table 2. Project Activity and Reporting History | Beaverdam Creek Restoration Site: Project No. D05016-1 | | | | | | | | | | | |--|-------------------------|-----------------------------|-------------------------------------|--|--|--|--|--|--|--| | Activity or Report | Scheduled
Completion | Data Collection
Complete | Actual
Completion or
Delivery | | | | | | | | | Restoration Plan Prepared | Nov-05 | N/A | | | | | | | | | | Restoration Plan Amended | Dec-05 | N/A | | | | | | | | | | Restoration Plan Approved | Dec-05 | N/A | | | | | | | | | | Final Design – (at least 90% complete) | Dec-05 | N/A | | | | | | | | | | Construction Begins | May-06 | N/A | Jun-06 | | | | | | | | | Temporary S&E mix applied to entire project area | N/A | N/A | Jan-07 | | | | | | | | | Permanent seed mix applied to entire project area | Mar-06 | N/A | Jan-07 | | | | | | | | | Planting of live stakes | Nov-06 | N/A | Jan-07 | | | | | | | | | Planting of bare root trees | Nov-06 | N/A | Jan-07 | | | | | | | | | Survey of As-built conditions (Year 0 Monitoring-baseline) | Jan-07 | Mar-07 | Apr-07 | | | | | | | | | Repair work | | | | | | | | | | | | Year 1 Monitoring | Dec-07 | Nov-07 | Dec-07 | | | | | | | | | Year 2 Monitoring | Dec-08 | Nov-08 | Dec-08 | | | | | | | | | Year 3 Monitoring | Dec-09 | Nov-09 | Dec-09 | | | | | | | | | Year 4 Monitoring | Dec-10 | Unknown | Unknown | | | | | | | | | Year 5 Monitoring | Dec-11 | Unknown | Unknown | | | | | | | | Table 3. Project Contact | Beaverdam Creek Restoration Site: Project No. D05016-1 | | | | | | | | | |--|----------------------------------|--|--|--|--|--|--|--| | Full Service Delivery Contractor | | | | | | | | | | River Works, Incorporated | 8000 Regency Parkway, Suite 200 | | | | | | | | | Kiver works, incorporated | Cary, NC 27518 | | | | | | | | | | Contact: | | | | | | | | | | Will Pedersen, Tel. 919-459-9001 | | | | | | | | | Designer | | | | | | | | | | Michael Baker Engineering, Inc. | 8000 Regency Parkway, Suite 200 | | | | | | | | | Whenaci Baker Engineering, me. | Cary, NC 27518 | | | | | | | | | | Contact: | | | | | | | | | | Kevin Tweedy, Tel 919-463-5488 | | | | | | | | **Table 3. Project Contact** | Beaverdam Creek Restoration Site: Project No. D05016-1 | | | | | | | | | | | |--|-------------------------------------|--|--|--|--|--|--|--|--|--| | Construction Contractor | | | | | | | | | | | | River Works, Inc. | 8000 Regency Parkway, Suite 200 | | | | | | | | | | | River Works, Inc. | Cary, NC 27518 | | | | | | | | | | | | Contact: | | | | | | | | | | | | Will Pedersen, Tel. 919-459-9001 | | | | | | | | | | | Planting Contractor | | | | | | | | | | | | River Works, Inc. | 8000 Regency Parkway, Suite 200 | | | | | | | | | | | River works, me. | Cary, NC 27518 | | | | | | | | | | | | Contact: | | | | | | | | | | | | Will Pedersen, Tel. 919-459-9001 | | | | | | | | | | | Seeding Contractor | | | | | | | | | | | | River Works, Inc. | 8000 Regency Parkway, Suite 200 | | | | | | | | | | | River works, me. | Cary, NC 27518 | | | | | | | | | | | | Contact: | | | | | | | | | | | | Will Pedersen, Tel. 919-459-9001 | | | | | | | | | | | Seed Mix Sources | Mellow Marsh Farm, 919-742-1200 | | | | | | | | | | | Nursery Stock Suppliers | Mellow Marsh Farm, 919-742-1200 | | | | | | | | | | | | International Paper, 1-888-888-7159 | | | | | | | | | | | Monitoring Performers | | | | | | | | | | | | Michael Baker Engineering, Inc. | 1447 S. Tryon Street, Suite 200 | | | | | | | | | | | Whenael Baker Engineering, Inc. | Charlotte, NC 28203 | | | | | | | | | | | Stream Monitoring Point of Contact: | Ian Eckardt, Tel.704-334-4454 | | | | | | | | | | | Vegetation Monitoring Point of | I F I I T I TO I COL 1454 | | | | | | | | | | | Contact: | Ian Eckardt, Tel. 704-334-4454 | | | | | | | | | | Table 4. Project Background | Table 4. Troject Dackground | | | | | | | | | |---|------------------------|--|--|--|--|--|--|--| | Beaverdam Creek Restoration Site: Pr | oject No. D05016-1 | | | | | | | | | Project County: | Mecklenburg County, NC | | | | | | | | | Drainage Area: | | | | | | | | | | UT1 (Reach 1) | 0.70 mi^2 | | | | | | | | | UT1 (Reach 2-5) | 1.73 mi^2 | | | | | | | | | UT1B | 0.34 mi^2 | | | | | | | | | UT1C | 0.15mi^2 | | | | | | | | | UT1D | 0.16 mi^2 | | | | | | | | | UT2 | 0.3 mi^2 | | | | | | | | | UT2A | 0.1 mi^2 | | | | | | | | | Estimated Drainage % Impervious Cover: | | | | | | | | | | UT1 (Reach 1) | 15% | | | | | | | | | UT1 (Reach 2-5) | 12% | | | | | | | | | UT1B | 10% | | | | | | | | | UT1C | 5% | | | | | | | | | UT1D | 21% | | | | | | | | | UT2 | 4% | | | | | | | | | UT2A | 2% | | | | | | | | **Table 4. Project Background Table** | Beaverdam Creek Restoration Site: Project No. D05016-1 | | | | | | | | | |---|--|--|--|--|--|--|--|--| | Stream Order: | . 2000101 | | | | | | | | | UT1 (Reach 1) | 1 | | | | | | | | | UT1 (Reach 2-5) | 2 | | | | | | | | | UT1B | 1 | | | | | | | | | UTIC | 1 | | | | | | | | | UTID | 1 | | | | | | | | | UT2 | 1 | | | | | | | | | UT2A | 1 | | | | | | | | | Physiographic Region | Piedmont | | | | | | | | | Ecoregion Ecoregion | Southern Outer Piedmont | | | | | | | | | Rosgen Classification of As-Built | | | | | | | | | | UT1 (Reach 1) | C/E | | | | | | | | | UT1 (Reach 2-5) | C/E | | | | | | | | | UT1B | C/E | | | | | | | | | UT1C | C/E | | | | | | | | | UT1D | C/E | | | | | | | | | UT2 | C/E | | | | | | | | | UT2A | C/E | | | | | | | | | Cowardin Classification | Riverine, Upper Perennial,
Unconsolidated Bottom, Cobble-
Gravel | | | | | | | | | Dominant Soil Types | | | | | | | | | | UT1 (Reach 1) | MO | | | | | | | | | UT1 (Reach 2-5) | MO, DaD, CeD2, PaE | | | | | | | | | UT1B | MO | | | | | | | | | UT1C | MO, PaE, CeD2 | | | | | | | | | UT1D | MO, PaE, CeD2 | | | | | | | | | UT2 | MO, CeD2 | | | | | | | | | UT2A | MO | | | | | | | | | Reference site ID | Spencer Creek, UT to Spencer Creek, McDowell Park, Latta Plantation, McClintock Creek (McNair & Stockwood), UT to Cleghorn, UT to Lake
Jeanette, UT to Big Lost Cove | | | | | | | | | USGS HUC for Project and Reference sites | 3050101170040 | | | | | | | | | NCDWQ Sub-basin for Project and Reference | 03-08-34 | | | | | | | | | NCDWQ classification for Project and Reference | С | | | | | | | | | Any portion of any project segment 303d listed? | No | | | | | | | | | Any portion of any project segment upstream of a 303d listed segment? | No | | | | | | | | | Reasons for 303d listing or stressor? | N/A | | | | | | | | | % of project easement fenced | 10% | | | | | | | | ### 1.5 Project Plan Plans depicting the as-built conditions of the major project elements, location of permanent monitoring cross-sections, and locations of permanent vegetation monitoring plots are presented in Appendix C of this report. ### 2.0 VEGETATION MONITORING ### 2.1 Soil Data The soil data for the Site are presented in Table 5. Table 5. Soil Data for Project | Beaverdam Creek Restoration Site: Project No. D05016-1 | | | | | | | | | | | | |--|----------------|----------------------|------|---|-------|--|--|--|--|--|--| | Series | Max Depth (in) | % Clay on
Surface | К | т | OM % | | | | | | | | Cecil Sandy Clay Loam (CeD2) | 80 | 20-35 | 0.28 | 5 | 0.5-1 | | | | | | | | Monacan Loam (MO) | 80 | 7-27 | 0.43 | 5 | 2-3 | | | | | | | | Davidson sandy clay loam (DaD) | 75 | 20-35 | 0.28 | 5 | 0.5-2 | | | | | | | | Pacolet sandy loam (PaE) | 62 | 8-20 | 0.2 | 5 | 0.5-2 | | | | | | | | Pacolet sandy loam (PaF) | 62 | 8-20 | 0.2 | 5 | 0.5-2 | | | | | | | (USDA, 2006. Official Soil Series Descriptions: http://soils.usda.gov/technical/classification/osd/index.html) ### **General taxonomy of soils:** <u>Cecil:</u> The Cecil series consists of well-drained soils with moderate permeability on and near floodplains. They formed in residuum weathered felsic igneous and metamorphic rock, such as granite. Slopes range from 8 to 15 percent (USDA, 2006. "Soil Taxonomy"). <u>Monacan</u>: Soils of the Monacan series are deep, moderately well and somewhat poorly drained with moderate permeability. They formed in recent alluvial sediments of the Piedmont and Coastal Plain. Slopes are commonly less than 2 percent (USDA, 2006. "Soil Taxonomy"). <u>Pacolet:</u> The Pacolet series consists of very deep, well drained, moderately permeable soils that formed in material weathered mostly from acid crystalline rocks of the Piedmont uplands. Slopes commonly are 15 to 25 percent but range up to 2 to 60 percent (USDA, 2006. "Soil Taxonomy"). <u>Davidson</u>: The Davidson series consists of very deep, well drained moderately permeable soils that formed in materials weathered from dark colored rocks high in ferromagnesian minerals. These soils are on gently sloping to moderately steep uplands in the Piedmont. Slopes are commonly 2 to 15 percent but range up to 25 percent (USDA, 2006. "Soil Taxonomy"). ### 2.2 Description of Species and Monitoring Protocol The Site was planted in bottomland hardwood forest species in early – mid March of 2007. There were twenty-four vegetation-monitoring plots established throughout the planting areas. The following tree species were planted in the restoration area: **Table 6. Tree Species Planted** Beaverdam Creek Restoration Site: Project No. D05016-1 | ID | Scientific Name | Common Name | FAC Status | |----|---------------------------|---------------------|------------| | 1 | Alnus serrulata | Tag Alder | FACW+ | | 2 | Asimina triloba | Paw paw | FAC | | 3 | Cercis canadensis | Redbud | FACU | | 4 | Celtis laevigata | Sugarberry | FACW | | 5 | Cephalanthus occidentalis | Buttonbush | OBL | | 6 | Cornus amomum | Silky Dogwood | FACW+ | | 7 | Cornus florida | Flowering Dogwood | FACU | | 8 | Diospyros virginiana | Persimmon | FAC | | 9 | Fraxinus pennsylvanica | Green Ash | FACW | | 10 | Juglan nigra | Black Walnut | FACU | | 11 | Liriodendron tulipiferra | Tulip poplar | FACW | | 12 | Platanus occidentalis | Sycamore | FACW- | | 13 | Nyssa sylvatica | Blackgum | FAC | | 14 | Quercus michauxii | Swamp chestnut oak | FACW- | | 15 | Quercus phellos | Willow oak | FACW- | | 16 | Quercus rubra | Red oak | FACU | | 17 | Sambucus candensis | Elderberry | FACW- | | 18 | Viburnum dentatum | Arrow-wood viburnum | FAC | (USDA, 2007: http://plants.usda.gov) The following monitoring protocol was designed to predict vegetative survivability. Twenty-four plots were established throughout the Site. The number of plots was based on the species/area curve method and their location was based on EEP monitoring guidance. The size of individual plots was 100 square meters. The locations of the vegetation plots are shown on the as-built plan sheets in Appendix C. Individual quadrant data provided includes density and coverage quantities. Relative values were calculated, and importance values were determined. Individual seedlings were marked to ensure that they can be found in succeeding monitoring years. Mortality was determined from the difference between the previous year's living, planted seedlings and the current year's living, planted seedlings. ### 2.3 Vegetation Success Criteria The interim measure of vegetative success for the Site will be the survival of at least 320 3-year old planted trees per acre at the end of year three of the monitoring period. The final vegetative success criteria will be the survival of 260 5-year old planted trees per acre at the end of year five of the monitoring period. ### 2.4 Results of Vegetative Monitoring The following table presents stem counts for each of the monitoring plots. Each planted tree species is identified down the left column, and each plot is identified across the top row. The numbers on the top row correlate to the vegetation plot IDs. Trees are flagged in the field on an as-needed basis before the flags degrade. Flags are utilized because they will not interfere with the growth of the tree. Volunteer species are also flagged during this process. During the initial counts of species totals during the as-built monitoring report, some tree species were unidentifiable (no buds or leafs) and documented as *Unknown Quercus* in the stem plot counts or were labeled incorrectly. During Year 1 vegetative monitoring, three of the four *Unknown Quercus* were identified as *Quercus michauxii* and updated. Tree species that were labeled incorrectly have been updated and coded within Table 7 to represent the correction. The average stem count per acre for Year 3 monitoring was 475. The range of stem counts throughout the 24 vegetative monitoring plots was from 160 - 760. The current survivability rate for Year 3 is 76.0%. The data reflects that the overall site has met the minimum success interim criteria of 320 trees per acre by the end of year three and is on trajectory for meeting the final success criteria of 260 trees per acre by the end of year five. No volunteer species were noted in any of the Site's vegetation plots, or were too small to verify. If any woody volunteer species are observed in subsequent monitoring years they will be flagged and added to the overall stems per acre assessment of the Site. Table 7. Year 3 Stem Counts for Each Species Arranged by Plot | Beaverdam Creek Restor | Beaverdam Creek Restoration Site: Project No. D05016-1 |---------------------------|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------------------------------|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|------------------|------------------|------------------|---------------| | | Plots | | | | | | | | | | As- | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 0/ | | | | | | | | | | | | | | | | | UT1 | | | | | | | | | | | | | | | | | UT2 | | | | | | | built | Year 1
Totals | Year 2
Totals | Year 3
Totals | %
Survival | | Tree Species | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Totals | Totals | Totals | Totals | Burvivar | | Alnus serrulata | 2 | 2 | 0 | 0 | 0.0 | | Asimina tuiloba | | | | | | | | 4 | 3 | | 3 | 2 | 1 | | | | | | | | | | | | 21 | 18 | 13 | 13 | 61.9 | | Cercis canadensis | | | | | | | | | | | | | | | 1 | | | | | | | | | | 3 | 3 | 1 | 1 | 33.3 | | Celtis laevigata | 1 | | | | 1 | | | | | | | | | 2 | | | | | | | | | | | 6 | 3 | 3 | 4 | 66.7 | | Cephalanthus occidentalis | 1 | 1 | 1 | 0 | 0.0 | | Cornus amomum | 1 | 0 | 1 | 0 | 0.0 | | Cornus florida | 2 | 3 | 0 | 0 | 0.0 | | Diospyros virginiana | | 1 | 1 | | 3 | 3 | 2 | 2 | 66.7 | | Fraxinus pennsylvanica | 4 | | | 4 | 7 | 1 | 6 | 1 | | | 1 | 3 | 4 | 3 | 6 | 5 | | 3 | 13 | | 2 | 8 | 5 | 1 | 77 | 76 | 75 | 77 | 100.0 | | Juglan nigra | 1 | 1 | 1 | 1 | | 4 | | 2 | | 7 | | 1 | 2 | | | | | | | | | | | | 31 | 28 | 21 | 20 | 64.5 | | Liriodendron tulipiferra | 1 | | 1 | | 1 | | 2 | | | 2 | | 3 | | 2 | | 1 | 2 | 2 | | 1 | 2 | | | 2 | 36 | 29 | 21 | 22 | 61.1 | | Platanus occidentalis | | 2 | | 2 | 4 | 4 | 1 | 5 | | 2 | | | | 1 | | 1 | 1 | | | 7 | 4 | | 1 | 1 | 54 | 46 | 36 | 36 | 66.7 | | Nyssa sylvatica | 2 | 1 | 2 | 3 | | 1 | | 1 | | | | 1 | 5 | | 3 | 2 | 5 | 2 | | 3 | 2 | | 5 | 2 | 55 | 50 | 46 | 40 | 72.7 | | Quercus michauxii | 1 | 4 | 7 | 2 | | | 2 | 4 | | | 1 | 1 | 3 | 3 | 2 | 1 | | 6 | | | 3 | 6 | 2 | 1 | 55 | 57 | 47 | 49 | 89.1 | | Quercus phellos | 1 | 1 | 2 | 1 | 1 | | 1 | 1 | | 1 | 4 | | 1 | | | 4 | | | | | | | | | 20 | 20 | 18 | 18 | 90.0 | | Quercus rubra | | | | | | | | 1 | | | | | | 1 | | | | | | | | | | | 1 | 1
 3 | 2 | 200.0 | | Sambucus candensis | 1 | 0 | 0 | 0 | 0.0 | | Vibernum dentatum | | | | | | | | | 1 | | | | | | | | | | | | | | | | 2 | 2 | 1 | 1 | 50.0 | | Unknown Quercus | 4 | 1 | 1 | 0 | 0.0 | | Stems/plot | 11 | 10 | 13 | 13 | 14 | 10 | 12 | 19 | 4 | 12 | 9 | 11 | 16 | 12 | 12 | 14 | 8 | 13 | 13 | 11 | 13 | 14 | 14 | 7 | 375 | 343 | 290 | 285 | 76.0 | | Stems/acre | 440 | 400 | 520 | 520 | 560 | 400 | 480 | 760 | 160 | 480 | 360 | 440 | 640 | 480 | 480 | 560 | 320 | 520 | 520 | 440 | 520 | 560 | 560 | 280 | | | | 475 | Average | Tree # 3-7 was mislabelled as Platanus occidentalis in As-built Initial Counts Tree # 3-16 was mislabelled as Liriodendron tulipifera in As-built Initial Counts Tree # 7-10 was mislabelled as Asimina tuiloba in As-built Initial Counts Tree # 7-2, -3, -4 were mislabelled as Fraxinus pennsylvanica in As-built Initial Counts Tree # 14-5, -8, -10 were labelled as unknown in As-built Initial Counts Tree # 7-21 was labelled as Liriodendron tulipifera in the field but was not added in the As-built Initial Counts Tree # 7-4 was mislabelled as Quercus michauxii in the Year 1 Monitoring Counts Tree # 16-6 was mislabelled as Nyssa sylvatica in the Year 1 Monitoring Counts Tree # 9-1 was incorrectly counted as Cercis canadensis instead of Cornus amomum in the Year 1 Monitoring Counts Tree # 8-10 was mislabelled as Quercus phellos in the As-built Initial Counts Tree # 1-6 was mislabelled as Quercus phellos in the As-built Initial Counts ### 2.5 Vegetation Observations During 2009 minor repairs were made to the stream-side vegetation. Maintanence work at Station 56+55 on UT1 involved the removal of a rock and roll log structure that lost functionality. The right bank was re-graded and a brush mattress with a live fascine toe was installed. Other repairs included the re-grading and resetting of rootwads at Station 68+50 on UT1. Geolifts with vegetation were added upstream and immediately on top of these rootwads. Live stakes were installed and bare roots planted in the small disturbed work area in the vicinity of Station 68+50. A sewer line was installed by Mecklenburg County during the spring of 2009 that crosses UT1 at Station 76+60. The disturbed area will be replanted early in 2010. In January of 2009 seeding and mulching was completed at the top UT2A where a BMP was removed in late 2008. Bare roots were planted in the footprint of the old BMP in March. Beyond these minor repairs, the stream-side and floodplain vegetation has continued to successfully establish throughout the project site. ### 2.6 Vegetation Problem Areas Invasive species are present but minimal throughout the project site. At this time, there seem to be no invasive species problem areas. Although none seem to be posing any problems, invasive species can very quickly affect the survivability of the planted stems the weedy species should be monitored to prevent any major mortality issue. ### 2.7 Vegetation Photos Photos of the project showing the on-site vegetation are included in Appendix A of this report. ### 3.0 STREAM MONITORING ### 3.1 Description of Stream Monitoring To document the stated success criteria, the following monitoring program was instituted following construction completion on the Site: Bankfull Events: The occurrence of bankfull events within the monitoring period was documented by the use of two automated stage recorders. The University of North Carolina (UNCC) installed and monitored the readings from both stage recorders. Gauging station BD2 was installed on UT1 and gauging station BD3 was installed on UT2. Each data logger recorded the watermark at 15 minute intervals at each station and was checked at each Site visit to determine if a bankfull event had occurred. Photos of the bankfull events were not available from UNCC. Figure 4 shows the locations of the stage recorders. Cross-Sections: Two permanent cross-sections were installed per 1,000 linear feet of stream restoration work, with one located at a riffle cross-section and one located at a pool cross-section. Twenty four total cross sections were established. Each cross-section was marked on both banks with permanent pins to establish the exact transect used. A common benchmark was used for cross-sections and consistently referenced to facilitate comparison of year-to-year data. The annual cross-sectional survey included points measured at all breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross-sections were classified using the Rosgen stream classification system (Rosgen, 1994). Permanent cross-sections for 2009 (Year 3) were surveyed in October 2009. Longitudinal Profiles: A representative longitudinal profile was surveyed for 2009 (Year 3). The initial 3,562 linear feet of profile was collected for the mainstem reach of UT1. Measurements included thalweg, water surface, bankfull, and top of low bank. Each of these measurements was taken at the head of each feature (e.g., riffle, pool, glide). In addition, maximum pool depth was recorded. All survey was tied to a single permanent benchmark. *Bed Material Analysis:* Pebble counts were conducted for the permanent cross-sections (100 counts per cross-section) on the project reaches. Pebble count data was plotted on a semi-log graph and are included in Appendix B. Photo Reference Stations: Photographs were used to visually document restoration success. Fifty-one (51) reference stations were established to document conditions at the constructed grade control structures across the Site. These photos are provided in Appendix A. The GPS coordinates of each photo station were noted as additional reference to ensure the same photo location was used throughout the monitoring period. These stations are included in the As-built Plan Sheets in Appendix C. Reference photos were taken once per year. Each streambank was photographed at each permanent cross-section photo station. For each streambank photo, the photo view line followed a survey tape placed across the channel, perpendicular to flow (representing the cross-section line). The photograph was framed so that the survey tape is centered in the photo (appears as a vertical line at the center of the photograph), keeping the channel water surface line horizontal and near the lower edge of the frame. These photos are presented along with the cross-section monitoring data in Appendix B. ### 3.2 Stream Restoration Success Criteria The approved Mitigation Plan requires the following criteria be met to achieve stream restoration success: - Bankfull Events: Two bankfull flow events must be documented within the five-year monitoring period. The two bankfull events must occur in separate years. - *Cross-Sections:* There should be little change in as-built cross-sections. If changes to channel cross-section take place, they should be minor changes representing an increase in stability (e.g., settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio). - Longitudinal Profiles: The longitudinal profiles should show that the bedform features are remaining stable (not aggrading or degrading). The pools should remain deep with flat water surface slopes and the riffles should remain steeper and shallower than the pools. - Bed Material Analysis: Pebble counts should indicate maintenance of bed material. - Photo Reference Stations: Photographs will be used to subjectively evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation and effectiveness of erosion control measures. Photos should indicate the absence of developing bars within the channel, no excessive bank erosion or increase in channel depth over time, and maturation of riparian vegetation. ### 3.3 Bankfull Discharge Monitoring Results On-site data loggers documented the occurrence of multiple bankfull flow events during the third year (2009) of the post-construction monitoring period (Table 8). Maximum stage heights of 6.67 ft and 1.828 ft were recorded on 6/5/09 by the data loggers BD2 and BD3, respectively. See Table 8, below, for all bankfull events during monitoring Year 3. **Table 8. Verification of Bankful Events** | Beaverdam Creek Restoration Site: Project No. D05016-1 | | | | | | | | | | | | |--|----------------------------|--------------------------------------|------------------------------|--------------------|--|--|--|--|--|--|--| | Station Number | Date of Data
Collection | Date of Occurrence of Bankfull Event | Method of Data
Collection | Gage Height (feet) | | | | | | | | | | N/A | 1/6/2009 | Datalogger | 5.53 | | | | | | | | | | N/A | 3/1/2009 | Datalogger | 6.5 | | | | | | | | | BD2 | N/A | 3/28/2009 | Datalogger | 5.69 | | | | | | | | | DD2 | N/A | 5/5/2009 | Datalogger | 6.3 | | | | | | | | | | N/A | 5/26/2009 | Datalogger | 6.66 | | | | | | | | | | N/A | 6/5/2009 | Datalogger | 6.67 | | | | | | | | | | N/A | 1/4/2009 | Datalogger | 0.972 | | | | | | | | | | N/A | 1/6/2009 | Datalogger | 1.496 | | | | | | | | | | N/A | 2/28/2009 | Datalogger | 1.075 | | | | | | | | | | N/A | 3/1/2009 | Datalogger | 1.759 | | | | | | | | | | N/A | 3/9/2009 | Datalogger | 0.87 | | | | | | | | | | N/A | 3/15/2009 | Datalogger | 1.128 | | | | | | | | | BD3 | N/A | 3/28/2009 | Datalogger | 1.506 | | | | | | | | | BD3 | N/A | 4/10/2009 | Datalogger | 1.021 | | | | | | | | | | N/A | 4/20/2009 | Datalogger | 0.9 | | | | | | | | | | N/A | 5/5/2009 | Datalogger | 1.409 | | | | | | | | | | N/A | 5/24/2009 | Datalogger | 1.453 | | | | | | | | | | N/A | 5/26/2009 | Datalogger | 1.762 | | | | | | | | | | N/A | 6/5/2009 | Datalogger | 1.828 | | | | | | | | | | N/A | 9/20/2009 | Datalogger | 0.96 | | | | | | | | ### 3.4 Stream Monitoring Data and Photos A photo log of the project showing each of the fifty-one (51) permanent
photo locations is included in Appendix A of this report. Survey data and photos from each permanent cross-section are included in Appendix B of this report. ### 3.5 Stream Stability Assessment Table 9 presents a summary of the results obtained from the visual inspection of in-stream structures performed during Year 3 of post-construction monitoring. The percentages noted are a general overall field evaluation of how the features were performing at the time of the on-site visual stability assessment on November 20, 2009. These percentages are solely based on the field evaluator's visual assessment at the time of the site visit. Visual observations of the various structures throughout Year 3 growing season indicated that structures were functioning as designed and holding their elevation grade. Root wads placed on the outside of meander bends provided bank stability and in-stream cover for fish and other aquatic organisms. Cover logs placed in meander pool areas allowed scour to keep pools deep and provide cover for fish. During the Year 3 site visit, remnant scour was observed immediately underneath a few of the cover logs and other log vane structures. This was observed at stations 41+50, 53+80, and 56+00, of UT1. This minor amount of scour was the result of the large storm event that dropped 3.5 inches of rain on the project site shortly after construction was completed. The channel at these stations and throughout the project has remained largely unchanged through Year 3. A slight increase in the channel's performance scores reflects repair work at stations 56+55 and 68+50 that addressed structures that had lost functionality during Year 2. Year 3 observations noted that only log sill structures at stations 12+05 and 25+90 on UT1 had been bypassed either by scour under the structure or failure of the fabric seal. Table 9. Categorical Stream Feature Visual Stability Assessment | Beaverdam Creek Restoration Site: Project No. D05016-1 | | | | | | | | | | |--|------------------------|-------|-------|-------|-------|-------|--|--|--| | | Performance Percentage | | | | | | | | | | Feature | Initial | MY-01 | MY-02 | MY-03 | MY-04 | MY-05 | | | | | Riffles | 100% | 100% | 100% | 100% | | | | | | | Pools | 100% | 100% | 100% | 100% | | | | | | | Thalweg | 100% | 100% | 100% | 100% | | | | | | | Meanders | 100% | 100% | 100% | 100% | | | | | | | Bed General | 100% | 99% | 99% | 99% | | | | | | | Vanes / J Hooks etc. | 100% | 97% | 95% | 97% | | | | | | | Wads and Boulders | 100% | 100% | 100% | 100% | | | | | | ### 3.6 Cross-section, Longitudinal Profile, and Bed Material Analysis Monitoring Results ### **Cross Sections** Year 3 cross-section monitoring data for stream stability were collected during October 2009 and compared to as-built conditions, Year 1 conditions, and Year 2 conditions. The twenty four permanent cross-sections along the restored channels (twelve located across riffles and twelve across pools) were re-surveyed to document stream dimension at the end of the Year 3 monitoring period. Cross-sections are provided in Appendix B, and data from the cross-sections are summarized in Appendix E. Most cross-sections show that there has been minor adjustment to stream dimension within the last year; with the exception of cross-sections 11, 15, and 17. Cross-sections 11 and 17, are located across pools that have have experienced aggradation during Year 3. The aggradation documented at X11 is due to an unknown offsite sediment source. The recent deposition is only present at the very top of UT1D. X17 experienced bed scour during Year 2 as a result of 7.54 inch precipitation event between August 25 and 27, 2008. During Year 3 X17 has aggraded back towards its as-built depth. Scour followed by aggradation is a natural cycle in pool features and has not resulted in any observed channel instability. Photographs of X17 indicate that the banks of the stream are stable with vegetation. Cross-section 15, a riffle, also experienced aggradation. X15 is located immediately upstream of a large in-stream boulder. The aggradation in Year 3 followed scour observed during Year 2. This change in channel geometry is most likely influenced by the boulder structure and will be monitored, however no other action is required at this time. ### **Longitudinal Profiles** The Year 3 longitudinal profile was conducted during November 2009. The initial 3,000 LF of channel was surveyed along the mainstem of UT1. The longitudinal profile is included in Appendix B. A summary of parameters measured are provided in Appendix D. Please note that this summary represents only the portion of project that was surveyed. The representative longitudinal profile along the restored channel was resurveyed to document stream profile at the end of monitoring Year 3. Riffle slopes and pool-to-pool spacing were calculated for Reach 1 and Reaches 2-5 of UT1. The Year 3 riffle slope for Reach 1 is 0.014 ft/ft and pool-to-pool spacing has a mean value of 57 ft. These values are on par with the design values, which are respectively 0.009 ft/ft and 44 ft. Reaches 2-5 riffle slopes range from 0.008 ft/ft to 0.013 ft/ft are also similar to their design values that range from 0.005 to 0.018 ft/ft. The Year 2 pool-to-pool spacing of Reaches 2-5 ranges from 67 to 146 ft with a mean value of 114. These values are similar to the design value range of 101 to 120 ft. Sinuosity for Reach 1 was 1.04, which is the same as that calculated in Year 2. The sinuosity of Reaches 2-5 remained the same Year 2 with a value of 1.3. Profile remained largely unchanged with a few exceptions where pools had deepened due to scour or slightly aggraded. Overall pattern shows little to no change. ### **Bed Material Analysis** Year 3 bed material samples were collected at each permanent cross-section during October 2009. The pebble count data were plotted on a semi-log graph and will be compared with future monitoring data. Data indicates maintenance of a coarse bed in constructed riffles and a relative fining in the pools. All pebble count data are provided in Appendix B. ### 3.7 Areas of Concern Currently there are no areas of concern. ### 4.0 HYDROLOGY Rainfall data were collected to document the hydrologic conditions throughout the project area in the 2009 growing season. Since no rain gauges were installed within the project boundaries, monthly rainfall totals were calculated from data downloaded from the Withers Cove USGS gauge 35090308100454 in Mecklenburg County, NC. Historical rainfall data were collected from the Charlotte WSO AP WETS Station in Mecklenburg County (NC 1690) using NRCS National Water and Climate Data Center website. The total rainfall in inches for 2008 - 2009 is less than the historical average totals. May and October were the only two months that recorded rainfall data above the historical average. Precipitation for the month of June was well below the 30 percentile mark. Hydrologic monitoring results are shown in Table 10 and Figure 5. Table 10. Comparison of Historic Rainfall to Observed Rainfall | Beaverdam Creek Restoration Site: EEP Contract No. D05016-1 | | | | | | | | |---|---------|-------|-------|-----------------------------------|--|--|--| | Month | Average | 30% | 70% | Observed 2008-09
Precipitation | | | | | January | 4.00 | 3.21 | 5.15 | 2.09 | | | | | February | 3.55 | 2.34 | 4.42 | 2.05 | | | | | March | 4.39 | 3.01 | 5.54 | 3.10 | | | | | April | 2.95 | 1.98 | 3.73 | 2.02 | | | | | May | 3.66 | 2.33 | 4.29 | 5.94 | | | | | June | 3.42 | 2.43 | 4.68 | 0.68 | | | | | July | 3.79 | 2.49 | 4.76 | 2.46 | | | | | August | 3.72 | 2.34 | 4.57 | 2.54 | | | | | September | 3.83 | 2.00 | 4.68 | 2.77 | | | | | October | 3.66 | 1.80 | 4.49 | 3.91 | | | | | November | 3.36 | 2.51 | 4.24 | 2.94 | | | | | December | 3.18 | 2.11 | 3.81 | 2.99 | | | | | Total Rainfall | 43.51 | 28.55 | 54.36 | 33.489 | | | | (NRCS National Climate and Water Center, 2003 and USGS, 2009) ^{*} Monthly rainfall data was calculated based on rainfall data from 11/1/08 – 10/31/09 using the nearest USGS rain gauge data (USGS 35090308100454 Withers Cove in Mecklenburg County) to the project site. (USGS, 2009) Figure 5. Historic Average vs. Observed Rainfall ### 5.0 CONCLUSIONS AND RECOMMENDATIONS Vegetation Monitoring. Vegetation monitoring efforts have calculated the range of stems per acre for each plot to be from 160 to 760 stems per acre on the 24 vegetation plots. The average number of stems per acre is 475, which is a survival rate of 76% based on the initial planting count of 625 stems per acre. The overall site has met the minimum success interim criteria of 320 trees per acre by the end of Year 3. Assuming that preventative methods will be used to maintain any invasive exotics, vegetation survivability should remain excellent on the Site and final vegetative success criteria will be met. Stream Monitoring. The total length of stream channel restored and/or preserved on the Site was 15,806 linear feet. This entire length was inspected during Year 3 of the monitoring period (2009) to assess stream performance. Based on the data collected, riffles, pools, and other constructed features along the restored channel are stable and functioning as designed. Minor bed scour, the result of a large storm event shortly after construction was complete, was noted at isolated pockets along UT1 but has changed little. Two log sill structures should be resealed along UT1 to restore functionality. The lack of major problem areas along the length of the restored channels after the occurrence of two stream flow events larger than bankfull discharge further supports functionality of the design. It is expected that stability and in-stream habitat of the system will continue to improve in the coming years as permanent vegetation becomes more established. ### 6.0 WILDLIFE OBSERVATIONS During
the monitoring assessment in October 2009, a Great Blue Heron was observed within the project area. Observations of deer and raccoon tracks are also common on the Site. In addition, frogs, turtles, turkey, and fish have also been observed periodically. ### 7.0 REFERENCES Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22:169-199. Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books. United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS). 2006. Soil Series Descriptions. http://soils.usda.gov/technical/classification/osd/index.html USDA. NRCS. 2006. Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys. ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/tax.pdf USDA. NRCS. 2003. Climate Information for Mecklenburg County in the State of North Carolina (1971-2000). TAPS Station: CHARLOTTE WSO AP, NC1690 ftp://ftp.wcc.nrcs.usda.gov/support/climate/taps/nc/37119.txt USDA, NRCS. 2007. The PLANTS Database (28 November 2007). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. http://plants.usda.gov U.S. Geological Service (USGS). 2009. Real-Time Data for North Carolina - Precipitation USGS Water-Data Site Information for North Carolina. USGS 35090308100454 Withers Cove in Mecklenburg County, NC. Retrieved on 2009-11-20 10:25:09 EDT http://waterdata.usgs.gov/nc/nwis/current/?type=precip&group_key=county_cd # APPENDIX A Photo Log **UT1 – PID 6** # PHOTO LOG – UT1 # PHOTO LOG – UT1 # PHOTO LOG – UT1 **UT1 – PID 19** **UT1 – PID 20** **UT1 – PID 21** **UT1 – PID 22** **UT1 – PID 23** # PHOTO LOG – UT1B, UT1C, & UT1D UT1C - PID 6 **UT1B – PID 5** # PHOTO LOG – UT1B, UT1C, & UT1D UTIC - PID 8 UT1C - PID 9 **UTD – PID 10** **UT1D – PID 11** **UT1D – PID 12** ## PHOTO LOG - UT2 & UT2A ## PHOTO LOG - UT2 & UT2A ## PHOTO LOG - UT2 & UT2A **UT2A – PID 1** UT2A – PID 2 **UT2A – PID 3** **UT2A – PID 4** # **VEG PLOT PHOTOS – UT1 & UT1B – UT1D** UT1 – Veg Plot 1 UT1 – Veg Plot 2 UT1 – Veg Plot 3 UT1 – Veg Plot 4 UT1 – Veg Plot 5 UT1 – Veg Plot 6 Beaverdam Creek, EEP Contract No. D05016-1, River Works, Inc. December 2009, Monitoring Year 3 # **VEG PLOT PHOTOS – UT1 & UT1B – UT1D** UT1 – Veg Plot 7 UT1 – Veg Plot 8 UT1 - Veg Plot 9 UT1 – Veg Plot 10 UT1 – Veg Plot 11 UT1 – Veg Plot 12 # **VEG PLOT PHOTOS – UT1 & UT1B – UT1D** UT1 – Veg Plot 13 UT1 – Veg Plot 14 UT1B - Veg Plot 15 UT1C - Veg Plot 16 UT1D - Veg Plot 17 # **VEG PLOT PHOTOS – UT2 & UT2A** UT2 - Veg Plot 6 UT2 – Veg Plot 5 # **VEG PLOT PHOTOS – UT2 & UT2A** UT2 – Veg Plot 7 # APPENDIX B STREAM MONITORING DATA # **Beaverdam Creek UT1 Mainstem Profile (2009 Monitoring)** # **Beaverdam Creek UT1 Mainstem Profile (2009 Monitoring)** Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------|----------------|----------|-----------|--------------|------------------|------|----------|----|----------|-------------| | Pool | | 28.1 | 18.44 | 1.52 | 2.93 | 12.1 | 1 | | 599.47 | 599.47 | | | | | | | X1 Pool | | | | | | | 603 | | | | | | | | | | | | 602 | | | | | | | | | | | Looking at the Left Bank Looking at the Right Bank | Feat | ture | Stream
Type | BKF Area | BKF
Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |-----------|-------|----------------|-----------|--------------|--------------|------------------|----------|----------|----------|----------|-------------| | Rif | fle | E | 16.9 | 12.74 | 1.32 | 1.92 | 9.62 | 1 | 5.9 | 598.9 | 598.9 | | | | | | | | X2 Riffl | e | | | | | | ć | 602 - | | | | | | | | | | | | 6 | 601 - |)
 | | | | | | | | | € | | (| 600 - | | | | | | | | A. Ne | | | | ion | 599 | | * | × | *** | | <i>.</i> | | * | * | | | Elevation | 598 - | | | | | | | <i>.</i> | | | | | 4 | 597 - | | | | | | | | | | | | 4 | 596 - | | | | | | | | | | | | 3 | 595 - | | ⊶Bankfull | ⊖ Flo | odprone | As Bui | lt 🕂 | Year 1 - | * Year 2 | Year 3 | | | 4 | 594 - | | ı | 1 | 1 | | | Т | T | ı | | | | 10 | 00 | 110 | 120 | 13 | 0 1 Station | 40
n | 150 | 160 | 170 | | | | | | | | | Station | • | | | | | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------------|----------------|--|-----------|-------------|------------------|----------|----------|----------|----------|-------------| | Pool | | 16.3 | 13.89 | 1.17 | 2.68 | 11.87 | 1 | | 599.66 | 599.66 | | | | | | X | 3 Pool | | | | | | | 603 | | | | | | | | | | | | 602 | Θ | | | | | | | | | ⊙ | | 601 | | | | | | | | | | | | 600 | | ************************************* | | | | ** | *** | | * | * | | Elevation 599 | _ | | | | | | | | | | | 출
598 | _ | | | | | | | | | | | 597 | _ | | | | ** | | | | | | | 596 | | | | | | | | | | | | 595 | | Bankfull | ⊖Floodp | prone ——— A | As Built — | ← Year 1 | —*— Y | rear 2 – | Year 3 | | | 594 | | ı | T | ı | 1 | I | | ı | ı | | | 1 | 00 | 110 | 120 | 130 | 140 | 150 |) | 160 | 170 | | | | | | | | Station | | | | | | | | | | | | | | | | | | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------|----------------|----------|-----------|--------------|------------------|------|----------|-----|----------|-------------| | Riffle | Е | 14.1 | 10.81 | 1.3 | 2.36 | 8.31 | 1 | 6.9 | 599.66 | 599.66 | | | | | | | X4 Riffle | | | | | | | 603 - | | | | | | | | | | | | 602 |) | | | | | | | | | | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |-----------------|----------------|---|-----------|--------------|------------------|-------|-------------------|--------|----------|-------------| | Riffle | E | 22.8 | 15.11 | 1.51 | 2.27 | 10 | 1 | 5 | 597.83 | 597.83 | | | | | | | X5 Riffle | | | | | | | 601 | | | | | | | | | | | | 600 | 9 | | | | | | | | | | | 599 | | | | | | | | | | | | 5 598 | * | *************************************** | *** | | <u></u> | | × | | | ** | | Elevation 598 5 | - | | | | | | | | | | | 596 | | | | | /*** | ** | | | | | | 595 | - | | | | | ** | | | | | | 594 | | Bankfull | ⇔Floodpro | one —× | -As Built | → Yea | r 1 -* | Year 2 | Year 3 | | | 593 | | | | | | | | | 1 | | | 1 | 00 | 110 | 120 | 130 | 140 | | 150 | 160 | 170 | | | | | | | | Station | | | | | | Looking at the Left Bank Looking at the Right Bank | Fe | eature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |-----------|--------|----------------|----------|-----------|------------------|-----------------------|--------|----------------|--------|----------|-------------| | | Pool | 1370 | 41.3 | 23.32 | 1.77 | 3.57 | 13.16 | 1 | | 596.92 | 596.92 | | | | | • | | | X6 Pool | | | | | | | | 602 | | | | | | | | | | | | | 600 - |) | | | | | | | | ⊙ | | | | 000 | | | | | | | | | | | | _ | 598 - | | *** | | *** | | | - | * | *** | | | Elevation | 596 - | | | | ý | | | | | | | | Ele | 390 | | | | | | | | | | | | | 594 - | | | | | | | | | | | | | 592 - | | | | | | | | | | | | | 372 | | Bankfull | ⊕ Floodpr | one × | - As Built | → Year | 1 -*- | Year 2 | Year 3 | | | | 590 - | | T | ı | Г | ı | | ı | ı | Т | | | | 10 | 00 | 110 | 120 | 130 | 140
Station | | 150 | 160 | 170 | | | | | | | | | Station | | | | | | | | | | | | | | | | | | | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max
BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |-----------------|----------------|----------|-----------|--------------|---------------------|-------------|----------|-----------------|----------|-------------| | Riffle | С | 8.6 | 12.04 | 0.71 | 1.12 | 16.86 | 1 | 5.9 | 594.84 | 594.84 | | 597.5 | | | | | X7 Rifflo | 2 | | | | | | 596.5 | | | | | | | | | | * | | 595.5 | | *** | *** | | *** | | * | ** | | | | Elevation 294.5 | - | | | **** | | | | | | | | 593.5 | - | | | | | | | | | | | 592.5 | @ | Bankfull | ⇔Floodpi | rone —× | — As Built | → -7 | Year 1 → | ← Year 2 | Year 3 | | | 591.5 | 100 | 110 | 120 | 130 | 14 | 0 | 150 | 160 | 170 | | | | | 110 | | | Station | ~ | -20 | 100 | 2.0 | | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------|----------------|----------|-----------|--------------|------------------|------|----------|----|----------|-------------| | Pool | | 31.6 | 13.77 | 2.29 | 3.07 | 6.01 | 1 | | 593.43 | 593.43 | | | | | | | VO Daal | | | | | | Looking at the Left Bank Looking at the Right Bank | Feature | | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |-----------------|----------|----------|-----------|--------------|------------------|------|----------|--------|----------|-------------| | Riffle | Е | 28.1 | 17.43 | 1.61 | 2.82 | 10.8 | 1 | 4.3 | 590.6 | 590.6 | | 594 - | | | | | X9 Riffle | | | | | | | 593 - |) | | | | | | | | | ⊖ | | 592 - | | | | | | | v | | | * | | 591 | * | * * | * | | | * * | | * | | | | Elevation 589 - | | | | | | | | | | | | 1 589 − | | | | | | | | | | | | 588 - | | | | | | | | | | | |
587 - | | | | | | | | | | _ | | 586 - | € | Bankfull | Floodp | rone - | As Built | → Ye | ar 1 —* | Year 2 | Year 3 | | | 585 - | | T | ı | 1 | ı | | 1 | 1 | 1 | | | 10 | 00 | 110 | 120 | 130 | 140 | | 150 | 160 | 170 | | | | | | | | Station | Looking at the Left Bank Looking at the Right Bank | | Stream | | | BKF | Max BKF | | | | | TOB | |---------|--------|----------|-----------|-------|---------|-------|----------|----|----------|--------| | Feature | Type | BKF Area | BKF Width | Depth | Depth | W/D | BH Ratio | ER | BKF Elev | Elev | | Pool | | 45 | 23.51 | 1.91 | 3.58 | 12.28 | 1 | | 588.76 | 588.76 | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | DVE Donth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |-----------------|----------------|----------|-----------|-----------|------------------|-------|--|--------|-------------|-------------| | Pool | Турс | 16.1 | 20.06 | 0.8 | 1.84 | 24.98 | 1 | LK | 590.17 | 590.17 | | | | | | | 11 Pool | | | | 0,701 | | | 593 T | | | | | | | | | | | | 592 |) | | | | | | | | | ⊝ | | 591 | | | | | | | | | | | | 590 | * | * * | *** | | | | ************************************** | | | | | | | | | W. W. | | | | | × | | | Elevation - 885 | | | | | A XXX | | | | | | | | | | | | | | | | | | | 587 - | | | | | | | | | | | | 586 - | | D L-C-11 | ○ Fld- | V | A - D214 | A \$7 | 1 w 1 | W 2 | X 72 | | | 585 - | 6 | Banktuli | ⊖ Floodp | orone -x | AS BUILT | Year | rı -* | rear 2 | Year 3 | | | 584 | \ | 110 | 100 | 120 | 140 | | 150 | 160 | 150 | | | 10 |)U | 110 | 120 | 130 | 140
Station | - | 150 | 160 | 170 | | | | | | | | Station | | | | | | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |--|----------------|----------|-----------|--------------|------------------|-------------|-----------|--------|----------|-------------| | Riffle | С | 8.6 | 13.09 | 0.66 | 1.08 | 19.88 | 1 | 5.8 | 589 | 589 | | 590.5
590
589.5
588.5
588.5
587.5 | | | X | | X12 Riffle | | *** | | *** | © | | | ,] | Bankfull | ⊖ Flood | prone – | × As Built | → Ye | ear 1 —*— | Year 2 | Year 3 | | | 587 | | Dumman | | | | | | | | | | 587
586.5 | | 110 | 120 | 130 | 140 |) | 150 | 160 | 170 | | Looking at the Left Bank Looking at the Right Bank | | Stream | | | BKF | Max BKF | | | | | TOB | |------------------|---------|-----------|-----------|--------|-----------------------|------------|-------------|----------|----------|-----------| | Feature | Type | BKF Area | BKF Width | Depth | Depth | W/D | BH Ratio | ER | BKF Elev | Elev | | Pool | | 69.2 | 26.98 | 2.56 | 6.14 | 10.52 | 1 | | 586.55 | 586.5 | | | | | | | X13 Pool | | | | | | | 595 | | | | | | | | | | | | 593 | | | | | | | | | | | | 591 | | | | | | | | | | | | 589 | - | | | | | | | | | | | Elevation 585 | *** | *** | X | | | | | <i>j</i> | ** | ** | | 5 585 585 | _ | | | | | *** | * ** | | | | | 583 | | | | | | * | | | | | | 581 | - | | | | | | A | *** | | | | 579 | | -Bankfull | Floodpr | one —× | - As Built | → Y | ear 1 → | ← Year 2 | Year 3 | 3 | | 577 | | ı | ı | T | | | T | ı | ı | | | | 00 | 110 | 120 | 130 | 140
Station |) | 150 | 160 | 170 | | | | 00 | 110 | 120 | 130 | 140 |) | 150 | 160 | 170 | | (Year 3 Monitoring Data - collected October 2009) Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------------|----------------|----------|-----------|---|--|-------|----------|-----|----------|-------------| | Riffle | E | 42.7 | 21.42 | 2 | 3.52 | 10.74 | 1 | 3.4 | 585.23 | 585.23 | | | | | | 2 | X14 Riffle | | | | | | | 591 - | | | | | | | | | | | | 589 - | | | | | | | | | | **x | | 587 - | | | | | | | | *** | * | •• | | Elevation 585 | *** | | * | *************************************** | ······································ | | | | | | | 583 - | | | | | | * 1 | | | | | As Built 140 Station 130 → Year 1 150 —*****─ Year 2 160 Year 3 170 ---- Bankfull 110 ----- Floodprone 120 581 579 100 Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------------|----------------|----------|---|--------------|-----------------------|--|----------|----------|----------|-------------| | Riffle | C | 54 | 25.96 | 2.08 | 3.74 | 12.48 | 1 | 3 | 579.51 | 579.51 | | | | | | | X15 Riffle | | | | | | | 584 - | | | | | | | | | | | | 582 - |) | | | | | | | | | ⊖ | | 580 ; | *** | *** | *************************************** | | | | - | | ***** | | | Elevation 578 | | | | | 1 | | | | | | | 576 - | | | | | | , Company of the Comp | | | | | | 574 - | | Bankfull | ⊖ Floodp | rone → | ← As Built | →Ye | ar 1 —* | - Year 2 | Year 3 | | | 572 - | | ı | ı | TI | ı | | 1 | ı | ı | | | 10 | 00 | 110 | 120 | 130 | 140
Station | 1 | 50 | 160 | 170 | | | | | | | | Swii Jii | | | | | | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------------|----------------|----------|-----------|--------------|------------------|--------|---|--|----------|-----------------| | Pool | | 47.1 | 22.57 | 2.09 | 3.82 | 10.82 | 1 | | 576.77 | 576.77 | | 582 | | | | | X16 Pool | | | | | | | 580 | | | | | | | | | ⊖ | | | 578 - | | | | | | | | ************************************** | <u> </u> | K ≰ | | Elevation 576 | | | | · | | | *************************************** | | | | | 574 - | | | | | ** | | | | | | | 572 | | Bankfull | ⇔ Floodpr | one -× | - As Built | → Year | 1 -*- \ | Year 2 | Year 3 | | | 570 | 00 | 110 | | 120 | | 130 | 1, | 40 | 150 | | | | | 110 | | 120 | Station | | • | | 150 | | | | | | | | | | | | | | Looking at the Left Bank Looking at the Right Bank | | | Stream | | | BKF | Max BKF | | | | | TOB | |-----------|-------|--------|------------|-----------|-----------------|----------|-----------|----------|--------|----------|--------| | Fe | ature | Type | BKF Area | BKF Width | Depth | Depth | W/D | BH Ratio | ER | BKF Elev | Elev | | I | Pool | | 28.1 | 24.5 | 1.15 | 3.06 | 21.34 | 1 | - | 573.76 | 573.76 | | | 579 | | | | 2 | X17 Pool | | | | | \neg | | | 577 🥫 |) | | | | | | | | | | | tion | 575 | * | *** | A | <u></u> | | | | *** | *** | * | | Elevation | 573 - | | | | * | *** | * | | | | | | | 571 - | | | | | | X | | | | | | | 569 - | | | | | | "X | | | | | | | | ⊝] | Bankfull - | ⇔Floodpro | ne × | As Built | → Year | · 1 —*— | Year 2 | Year 3 | | | | 567 | | 1 | 1 | | | T | ı | | ı | | | | 10 | 00 | 110 | 120 | 13 | Station | 140 | 150 | | 160 | | | | | | | | | | | | | | | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------------------------|------------------|----------|-----------|------------|------------------|--------|----------|----------|----------|-------------| | Riffle | C | 33.8 | 22.68 | 1.49 | 2.75 | 15.2 | 1 | 3.56 | 574.21 | 574.21 | | | | | | X 1 | 8 Riffle | | | | | | | 578 | | | | | | | | | | | | 577 |
 | | | | | | | | | | | 576 | | | | | | | | | | | | 575 | **** | | | | | | |
^ | *** | ** | | Elevation 574 - 573 - 573 | | ^ | W | | | | * | | | | | E 573 | _ | | | | | | | | | | | 572 | _ | | | * | X. X. | | | | | | | 571 | | | | | | | | | | 7 | | 570 | | Bankfull | ⊖Flood | prone —×— | As Built - | → Year | 1 -*- | Year 2 | Year 3 | | | 569 | | ı | ı | ı | ı | ı | Т | | ı | | | 1 | 00 | 110 | 120 | 130 | 140 | 150 | 160 | | 170 | 180 | | | | | | | Station | | | | | | | | | | | | | | | | | | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------|----------------|----------|-----------|--------------|------------------|-------|----------|-----|----------|-------------| | Riffle | С | 9.1 | 12.58 | 0.72 | 1.04 | 17.44 | 1 | 3.2 | 612.68 | 612.68 | Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------|----------------|----------|-----------|--------------|------------------|------|----------|----|----------|-------------| | Pool | | 17.8 | 19.21 | 0.93 | 1.78 | 20.7 | 1 | - | 611.5 | 611.49 | **UT2 Permanent Cross Section X3** (Year 3 Monitoring Data - collected October 2009) Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |--------------------|----------------|--|-----------|--------------|------------------|-------------|----------|----------|---|-------------| | Riffle | C | 11.2 | 17.05 | 0.66 | 1.04 | 25.93 | 1 | 2.3 | 622.95 | 622.96 | | | | | | | X3 Riffle | | | | | | | 625 | 624 | • | | | | | | | | | * | | u 0 | | * | | | | | | ** | *************************************** | | | .≚ | | | | | | | | | | | | Elevation 623 | - | A. A | *** |
*\ | | | | | | | | Elevați
Elevați | | | *** | | | × / | | | | | | Elevați
622 - | | | | | ***** | | | | | | | | | Bankfull | Floodp | rone | *** As Built | → Ye | ear 1 —* | — Year 2 | → Year 3 | 3 | | 622 | | Bankfull | ⇔ Floodp | rone 115 | As Built | → Ye | | — Year 2 | Year 3 | 140 | UT2 Permanent Cross Section X4 (Year 3 Monitoring Data - collected October 2009) Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB Elev | |---------------|----------------|----------|-----------|--------------|------------------|------------|----------|---------------|----------|----------| | Pool | | 22.9 | 19.8 | 1.16 | 2.34 | 17.11 | 1 | - | 619.22 | 619.22 | | | | | | | X4 Pool | | | | | | | 622 |) | | | | | | | | | | | 621 - | | | | | | | · · | ** | | | | 620 | * | | | | | | | | | | | Elevation 619 | | | | N/A | | A A | | | | | | 618 | | | | | | | | | | | | 617 | | | | | | | | | | | | 616 | | Bankfull | ⇔ Floodp | rone – | × As Built | — 5 | Year 1 — | *— Year 2 | → Yea | ar 3 | Station **UT2 Permanent Cross Section X5** (Year 3 Monitoring Data - collected October 2009) Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |---------------|----------------|----------|-----------|--------------|------------------|-------|-------------|----------|----------|-------------| | Riffle | С | 23.4 | 16.99 | 1.37 | 2.05 | 12.36 | 1 | 2.3 | 585.95 | 585.95 | | 588 | 3 | | | | X5 Riffle | | | | | | | 587 | * | * | * | | | | | | | | | 586 - | _ | | A. T. | | | | | * * | *** | | | Elevation 585 | _ | | | | * '' | | | | | | | 584 | | | | | ** | *** | 4 ** | | | | | 583 - | | Bankfull | Floodp | rone → | ← As Built | → Ye | ear 1 —* | — Year 2 | Year 3 | | | 582 | | T | T | П | T | T | | 1 | T | | | 10 | 00 | 105 | 110 | 115 | 120
Station | 12: | 5 | 130 | 135 | 140 | **UT2 Permanent Cross Section X6** (Year 3 Monitoring Data - collected October 2009) Looking at the Left Bank Looking at the Right Bank | Feature | Stream
Type | BKF Area | BKF Width | BKF
Depth | Max BKF
Depth | W/D | BH Ratio | ER | BKF Elev | TOB
Elev | |----------------------|----------------|------------|------------|--------------|------------------|------|------------|----------|----------|-------------| | Pool | | 25.8 | 14.68 | 1.76 | 2.67 | 8.35 | 1 | - | 583.65 | 583.66 | | 587 - | | | | | X6 Pool | | | | | | | 301 |) | | | | | | <i>-</i> | ** | * | ** | | 586 | | | | | | | | | • | | | 585 - | . . . | - ⊁ | | | | | | | | | | 584 - | | * | *** | | | |) > | | | | | Elevation 583 | | | X | | | | | | | | | 582 - | | | | | | | | | | | | 581 - | | | | | | * * | | | | | | 580 - | | Bankfull | ⇔ Floodpro | one —× | — As Built | → Ye | ar 1 —* | — Year 2 | Year 3 | | | 579 - | 20 | 105 | 110 | 115 | 120 | 10 | | 120 | 125 | 140 | | 10 | 00 | 105 | 110 | 115 | 120
Station | 12 | 5 | 130 | 135 | 140 | #### PEBBLE COUNT DATA SHEET: POOL 100-COUNT | | | BAKER PROJECT NO. | 108528 | |----------------------|-------------------------------------|-------------------|--------| | SITE OR PROJECT: | Beaverdam Creek 3rd Year Monitoring | | | | REACH/LOCATION: | UT1 X1-Pool | | | | DATE COLLECTED: | 9/23/2009 | | | | FIELD COLLECTION BY: | KS/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Summary | | |---|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 9 | 9% | 9% | | รู้ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัล
รู้ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัล | Very Fine | .063125 | 67 | 67% | 76% | | \[align*display= | Fine | .12525 | | | 76% | | A Sasasas | Medium | .2550 | 23 | 23% | 99% | | ražaša N ažašašaš
ražaša D ašašašašaš
ražašaša | Coarse | .50 - 1.0 | | | 99% | | ร็อร์อร์อร์อร์อร์อร์อร์อร์อร์อร์อร์อ
ร็อร์อร์อร์อร์อร์อร์อร์อร์อร์อร์อร์อ
ร็อร์อร์อร์อร์อร์อร์อร์อร์อร์อร์อร์ | Very Coarse | 1.0 - 2.0 | 1 | 1% | 100% | | 2000 | Very Fine | 2.0 - 2.8 | | | 100% | | 2000 O | Very Fine | 2.8 - 4.0 | | | 100% | | \$PA\\$ | Fine | 4.0 - 5.6 | | | 100% | | POR GIVE | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 60 F80 | Coarse | 16.0 - 22.6 | | | 100% | | 294 J. R. C | Coarse | 22.6 - 32 | | | 100% | | | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (pool) | UT1 X1-Pool Pebble Count Size Class Distribution UT1 X1-Pool Pebble Count Particle Size Distribution # PEBBLE COUNT DATA SHEET: RIFFLE 100-COUNT | _ | BAKER PROJECT NO. | 108528 | | |----------------------|-------------------------------------|--------|--| | SITE OR PROJECT: | Beaverdam Creek 3rd Year Monitoring | | | | REACH/LOCATION: | UT1 X2-Riffle | | | | DATE COLLECTED: | 9/23/2009 | | | | FIELD COLLECTION BY: | KS/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Summary | | |---|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 33 | 33% | 33% | | 6a6a6a6a6a6a6a6a6a6a.
6a6a6a6a6a6a6a6a6a | Very Fine | .063125 | | | 33% | | \$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0
\$0\$0\$0\$0\$
\$0\$0\$0\$0\$
\$0\$0\$0\$0\$ | Fine | .12525 | | | 33% | | 9993 A 9993 | Medium | .2550 | 2 | 2% | 35% | | 5050505 N 0505050.
5050505 D 0505050.
5050505 D 0505050. | Coarse | .50 - 1.0 | 2 | 2% | 37% | | gagagagagagagagagaga
gagagagagagagagaga | Very Coarse | 1.0 - 2.0 | | | 37% | | 2000 | Very Fine | 2.0 - 2.8 | | | 37% | | W 2020 | Very Fine | 2.8 - 4.0 | | | 37% | | 20/20 | Fine | 4.0 - 5.6 | | | 37% | | POR RIVE | Fine | 5.6 - 8.0 | | | 37% | | | Medium | 8.0 - 11.0 | | | 37% | | | Medium | 11.0 - 16.0 | | | 37% | | W 100 | Coarse | 16.0 - 22.6 | | | 37% | | 099 | Coarse | 22.6 - 32 | | | 37% | | 1000000 | Very Coarse | 32 - 45 | | | 37% | | | Very Coarse | 45 - 64 | 20 | 20% | 57% | | | Small | 64 - 90 | 12 | 12% | 69% | | | Small | 90 - 128 | 23 | 23% | 92% | | COBBLE | Large | 128 - 180 | 8 | 8% | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | 175 mm | | |--------------------|----------|--| | | (riffle) | | UT1 X2-Riffle Pebble Count Size Class Distribution UT1 X2-Riffle Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|-------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | eek 3rd Year Monitoring | | | REACH/LOCATION: | UT1B X3-Poo | ol | | | DATE COLLECTED: | 9/23/2009 | | | | FIELD COLLECTION BY: | KS/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sum | mary |
--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 10 | 10% | 10% | | ร็อผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่ | Very Fine | .063125 | 61 | 61% | 71% | | \$a\$a\$a\$a\$a\$a\$a\$a\$a\$a\$a\$a\$
\$a\$a\$a\$a\$ | Fine | .12525 | 3 | 3% | 74% | | 747474 A 747474
747474 N 747474 | Medium | .2550 | 16 | 16% | 90% | | agagaga
agagaga
agagaga | Coarse | .50 - 1.0 | 6 | 6% | 96% | | 6a6a6a6a6a6a6a6a6a6a6a6
6a6a6a6a6a6a6a6 | Very Coarse | 1.0 - 2.0 | 4 | 4% | 100% | | 26 | Very Fine | 2.0 - 2.8 | | | 100% | | W 2000 | Very Fine | 2.8 - 4.0 | | | 100% | | 09 A 98 | Fine | 4.0 - 5.6 | | | 100% | | POR G | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 60 L | Coarse | 16.0 - 22.6 | | | 100% | | 991500 | Coarse | 22.6 - 32 | | | 100% | | 000000 | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | _ | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (pool) | UT1B X3-Pool Pebble Count Size Class Distribution UT1B X3-Pool Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|-------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | eek 3rd Year Monitoring | | | REACH/LOCATION: | UT1B X4-Rif | fle | | | DATE COLLECTED: | 9/23/2009 | | | | FIELD COLLECTION BY: | KS/CT | | | | DATA ENTRY BY: | KS | | | | | | I | PARTICLE CLASS COUN | Sum | mary | |--|------------------|-------------|---------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 51 | 51% | 51% | | agagagagagagagagaga
agagagagagagagagaga | Very Fine | .063125 | 35 | 35% | 86% | | a 3 a 3 a 3 a 3 a 3 a 3 a 3 a 3 a 3 a 3 | Fine | .12525 | 2 | 2% | 88% | | A GASAS | Medium | .2550 | 11 | 11% | 99% | | ASASASA N ASASAS
ASASASA D ASASAS | Coarse | .50 - 1.0 | 1 | 1% | 100% | | agagagagagagagagaga
agagagagagagagagaga | Very Coarse | 1.0 - 2.0 | | | 100% | | 30 B | Very Fine | 2.0 - 2.8 | | | 100% | | 2000 CA | Very Fine | 2.8 - 4.0 | | | 100% | | 86/A | Fine | 4.0 - 5.6 | | | 100% | | POR G | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | UODE DO | Medium | 11.0 - 16.0 | | | 100% | | 201 - KOV | Coarse | 16.0 - 22.6 | | | 100% | | 292 | Coarse | 22.6 - 32 | | | 100% | | 100000 | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | 1 mm | | |--------------------|----------|--| | | (riffle) | | UT1B X4-Riffle Pebble Count Size Class Distribution UT1B X4-Riffle Pebble Count Particle Size Distribution | | _ | | | |----------------------|---------------|-------------------------|--------| | | | BAKER PROJECT NO. | 108528 | | SITE OR PROJECT: | Beaverdam Cr | eek 3rd Year Monitoring | | | REACH/LOCATION: | UT1 X5-Riffle | | | | DATE COLLECTED: | 9/23/2009 | | | | FIELD COLLECTION BY: | KS/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sumi | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | | | 0% | | รัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอั | Very Fine | .063125 | 5 | 5% | 5% | | 7a3a3a3a3a3a3a3a3a3
7a3a3a3
7a3a3a3 S 7a3a3a3 | Fine | .12525 | 7 | 7% | 12% | | A COST | Medium | .2550 | 5 | 5% | 17% | | 7424242 N 742424
7424242 D 742424
742424 | Coarse | .50 - 1.0 | 1 | 1% | 18% | | รัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัส
รัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอั | Very Coarse | 1.0 - 2.0 | | | 18% | | 26,000 | Very Fine | 2.0 - 2.8 | | | 18% | | 20000000000000000000000000000000000000 | Very Fine | 2.8 - 4.0 | | | 18% | | 89A | Fine | 4.0 - 5.6 | | | 18% | | POR G | Fine | 5.6 - 8.0 | | | 18% | | | Medium | 8.0 - 11.0 | | | 18% | | | Medium | 11.0 - 16.0 | | | 18% | | 503 - K804 | Coarse | 16.0 - 22.6 | 1 | 1% | 19% | | 294,58 c | Coarse | 22.6 - 32 | 4 | 4% | 23% | | | Very Coarse | 32 - 45 | 10 | 10% | 33% | | | Very Coarse | 45 - 64 | 14 | 14% | 47% | | | Small | 64 - 90 | 12 | 12% | 59% | | | Small | 90 - 128 | 23 | 23% | 82% | | COBBLE | Large | 128 - 180 | 16 | 16% | 98% | | 000 | Large | 180 - 256 | 2 | 2% | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | 210 mm | |--------------------|----------| | | (riffle) | UT1 X5-Riffle Pebble Count Size Class Distribution UT1 X5-Riffle Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT1 X6-Pool | | | | DATE COLLECTED: | 9/23/2009 | | | | FIELD COLLECTION BY: | KS/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sum | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 57 | 57% | 57% | | ร็อผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่ | Very Fine | .063125 | 29 | 29% | 86% | | \$a\$a\$a\$a\$a\$a\$a\$a\$a\$a\$a\$a\$
\$a\$a\$a\$a\$ | Fine | .12525 | 4 | 4% | 90% | | 747474 A 747474
747474 N 747474 | Medium | .2550 | 10 | 10% | 100% | | agagaga
agagaga
D gagagaga
Gagagaga | Coarse | .50 - 1.0 | | | 100% | | 6a6a6a6a6a6a6a6a6a6a6a6
6a6a6a6a6a6a6a6 | Very Coarse | 1.0 - 2.0 | | | 100% | | 2000 | Very Fine | 2.0 - 2.8 | | | 100% | | 2000 X | Very Fine | 2.8 - 4.0 | | | 100% | | 09 A 98 | Fine | 4.0 - 5.6 | | | 100% | | POR G | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 60 L | Coarse | 16.0 - 22.6 | | | 100% | | 991 | Coarse | 22.6 - 32 | | | 100% | | 000000 | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (pool) | UT1 X6-Pool Pebble Count Size Class Distribution UT1 X6-Pool Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT1C X7-Rif | fle | | | DATE COLLECTED: | 9/23/2009 | | | | FIELD COLLECTION BY: | KS/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sum | mary |
---|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 7 | 7% | 7% | | รัสผู้สผัสผัสผัสผัสผัสผัสผัสผัสผัสผั
รัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผั | Very Fine | .063125 | | | 7% | | (a) a | Fine | .12525 | 6 | 6% | 13% | | Tagas A Tagasasas
Tagas N | Medium | .2550 | 6 | 6% | 19% | | ragas D ragasasas
ragas D ragasasas
ragas | Coarse | .50 - 1.0 | 1 | 1% | 20% | | <u>}`a&a&a&a&a&a&a&a&a&a&a
}`a&a&a&a&a&a&a&a&a&a&a&a&a&a&a&a&a&a&a&</u> | Very Coarse | 1.0 - 2.0 | | | 20% | | 3666 | Very Fine | 2.0 - 2.8 | | | 20% | | 2000 O | Very Fine | 2.8 - 4.0 | | | 20% | | 20/20 | Fine | 4.0 - 5.6 | | | 20% | | POR RIVE | Fine | 5.6 - 8.0 | | | 20% | | | Medium | 8.0 - 11.0 | 1 | 1% | 21% | | | Medium | 11.0 - 16.0 | | | 21% | | 60 F80 | Coarse | 16.0 - 22.6 | | | 21% | | 299 580 | Coarse | 22.6 - 32 | 4 | 4% | 25% | | 000000 | Very Coarse | 32 - 45 | 14 | 14% | 39% | | | Very Coarse | 45 - 64 | 14 | 14% | 53% | | | Small | 64 - 90 | 13 | 13% | 66% | | | Small | 90 - 128 | 21 | 21% | 87% | | COBBLE | Large | 128 - 180 | 13 | 13% | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | 175 mm | |--------------------|----------| | | (riffle) | UT1C X7-Riffle Pebble Count Particle Size Distribution UT1C X7-Riffle Pebble Count Size Class Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT1C X8-Poo | ol | | | DATE COLLECTED: | 9/23/2009 | | | | FIELD COLLECTION BY: | KS/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sum | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 36 | 36% | 36% | | ร็อผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู้อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่ | Very Fine | .063125 | 40 | 40% | 76% | | rajajajajajajajajaja
rajajajaj S (rajajaja
rajajajaj S (rajajajaj | Fine | .12525 | 10 | 10% | 86% | | A Sasas | Medium | .2550 | 14 | 14% | 100% | | 7020202 N 2020202
7020202 D 2020202 | Coarse | .50 - 1.0 | | | 100% | | ร็ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัล | Very Coarse | 1.0 - 2.0 | | | 100% | | 26 | Very Fine | 2.0 - 2.8 | | | 100% | | 2000 X | Very Fine | 2.8 - 4.0 | | | 100% | | APA 98 | Fine | 4.0 - 5.6 | | | 100% | | POR G | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 60 L | Coarse | 16.0 - 22.6 | | | 100% | | 2991520 | Coarse | 22.6 - 32 | | | 100% | | 0000000 | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (pool) | UT1C X8-Pool Pebble Count Size Class Distribution UT1C X8-Pool Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|---------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT1 X9-Riffle | 2 | | | DATE COLLECTED: | 9/23/2009 | | | | FIELD COLLECTION BY: | KS/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sum | mary | |---|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 4 | 4% | 4% | | รัสผู้สผัสผัสผัสผัสผัสผัสผัสผัสผัสผั
รัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผั | Very Fine | .063125 | 2 | 2% | 6% | | rakakakakakakakakakak
rakaka | Fine | .12525 | 3 | 3% | 9% | | A Sasasas | Medium | .2550 | 1 | 1% | 10% | | ražaša N ažašašaš
rašaša D ašašašaš
rašaša | Coarse | .50 - 1.0 | | | 10% | | Yayayayayayayayayaya
Yayayayayayayayayay | Very Coarse | 1.0 - 2.0 | 9 | 9% | 19% | | 3666 | Very Fine | 2.0 - 2.8 | | | 19% | | 2000 O | Very Fine | 2.8 - 4.0 | | | 19% | | 20/20 | Fine | 4.0 - 5.6 | | | 19% | | POR RIVE | Fine | 5.6 - 8.0 | | | 19% | | | Medium | 8.0 - 11.0 | 1 | 1% | 20% | | | Medium | 11.0 - 16.0 | | | 20% | | 60 F80 | Coarse | 16.0 - 22.6 | 1 | 1% | 21% | | 299 580 | Coarse | 22.6 - 32 | 5 | 5% | 26% | | 000000 | Very Coarse | 32 - 45 | 13 | 13% | 39% | | | Very Coarse | 45 - 64 | 12 | 12% | 51% | | | Small | 64 - 90 | 17 | 17% | 68% | | | Small | 90 - 128 | 23 | 23% | 91% | | COBBLE | Large | 128 - 180 | 9 | 9% | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | 150 mm | |--------------------|----------| | | (riffle) | UT1 X9-Riffle Pebble Count Size Class Distribution UT1 X9-Riffle Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|-------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | eek 3rd Year Monitoring | | | REACH/LOCATION: | UT1 X10-Poo | 1 | | | DATE COLLECTED: | 9/23/2009 | | | | FIELD COLLECTION BY: | KS/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sumi | mary | |---|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 60 | 60% | 60% | | รู้ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัล
รู้ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัล | Very Fine | .063125 | 6 | 6% | 66% | | ravavavavavavavavavav
ravavavav
ravavavav | Fine | .12525 | 1 | 1% | 67% | | 6555 A 6555 | Medium | .2550 | 20 | 20% | 87% | | 5050505 N | Coarse | .50 - 1.0 | 2 | 2% | 89% | | รัสผู้สผัสผัสผัสผัสผัสผัสผัสผัสผัสผั
รัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผัสผั | Very Coarse | 1.0 - 2.0 | | | 89% | | 2000 | Very Fine | 2.0 - 2.8 | | | 89% | | 2000 O | Very Fine | 2.8 - 4.0 | | | 89% | | 89 A PA | Fine | 4.0 - 5.6 | | | 89% | | POR RIVE | Fine | 5.6 - 8.0 | | | 89% | | | Medium | 8.0 - 11.0 | 1 | 1% | 90% | | | Medium | 11.0 - 16.0 | | | 90% | | 60 F80 | Coarse | 16.0 - 22.6 | | | 90% | | 299 <u> </u> | Coarse | 22.6 - 32 | 4 | 4% | 94% | | 000000 | Very Coarse | 32 - 45 | 1 | 1% | 95% | | | Very Coarse | 45 - 64 | 2 | 2% | 97% | | | Small | 64 - 90 | 1 | 1% | 98% | | | Small | 90 - 128 | 2 | 2% | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (looq) | UT1 X10-Pool
Pebble Count Size Class Distribution UT1 X10-Pool Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT1D X11-P | ool | | | DATE COLLECTED: | 9/10/2009 | | | | FIELD COLLECTION BY: | PL/CT | | | | DATA ENTRY BY: | KS | _ | | | | | | PARTICLE CLASS COUNT | Sum | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 2 | 2% | 2% | | ร็อผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู้อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่ | Very Fine | .063125 | 13 | 13% | 15% | | 70,70,70,70,70,70,70,70,70,70,70,70,70,7 | Fine | .12525 | 15 | 15% | 30% | | A CONTRACTOR | Medium | .2550 | 70 | 70% | 100% | | 7020202 N 7020202
7020202 D 7020202
7020202 | Coarse | .50 - 1.0 | | | 100% | | รัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสร | Very Coarse | 1.0 - 2.0 | | | 100% | | 2002 | Very Fine | 2.0 - 2.8 | | | 100% | | 2000 X | Very Fine | 2.8 - 4.0 | | | 100% | | APA 98 | Fine | 4.0 - 5.6 | | | 100% | | POR R | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 60 L | Coarse | 16.0 - 22.6 | | | 100% | | 991580 | Coarse | 22.6 - 32 | | | 100% | | 0000000 | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (pool) | UT1D X11-Pool Pebble Count Size Class Distribution UT1D X11-Pool Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT1D X12-F | Riffle | | | DATE COLLECTED: | 9/10/2009 | | | | FIELD COLLECTION BY: | PL/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sum | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | | | 0% | | รัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอั | Very Fine | .063125 | 20 | 20% | 20% | | rakakakakakakakakaka
rakakakak
rakakak | Fine | .12525 | 24 | 24% | 44% | | 6555 A 6555 | Medium | .2550 | | | 44% | | [0] 0 | Coarse | .50 - 1.0 | | | 44% | | Yayayayayayayayayaya
Yayayayayayayayayay | Very Coarse | 1.0 - 2.0 | | | 44% | | 26.00 | Very Fine | 2.0 - 2.8 | | | 44% | | 2000 00 00 00 00 00 00 00 00 00 00 00 00 | Very Fine | 2.8 - 4.0 | | | 44% | | PA PA | Fine | 4.0 - 5.6 | 1 | 1% | 45% | | POR G | Fine | 5.6 - 8.0 | | | 45% | | | Medium | 8.0 - 11.0 | | | 45% | | | Medium | 11.0 - 16.0 | | | 45% | | 50g - 600 | Coarse | 16.0 - 22.6 | 2 | 2% | 47% | | 294,58,c | Coarse | 22.6 - 32 | 7 | 7% | 54% | | | Very Coarse | 32 - 45 | 25 | 25% | 79% | | | Very Coarse | 45 - 64 | 15 | 15% | 94% | | | Small | 64 - 90 | 2 | 2% | 96% | | | Small | 90 - 128 | 2 | 2% | 98% | | COBBLE | Large | 128 - 180 | 2 | 2% | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | 160 mm | |--------------------|----------| | | (riffle) | UT1D X12-Riffle Pebble Count Size Class Distribution UT1D X12-Riffle Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT1 X13-Poo | 1 | | | DATE COLLECTED: | 9/10/2009 | | | | FIELD COLLECTION BY: | PL/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sum | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 50 | 50% | 50% | | ร็อผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู้อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่ | Very Fine | .063125 | 15 | 15% | 65% | | rajajajajajajajajaja
rajajajaj S (rajajaja
rajajajaj S (rajajajaj | Fine | .12525 | 10 | 10% | 75% | | A Sasas | Medium | .2550 | 15 | 15% | 90% | | 7020202 N 2020202
7020202 D 2020202 | Coarse | .50 - 1.0 | 1 | 1% | 91% | | ร็ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัล | Very Coarse | 1.0 - 2.0 | 9 | 9% | 100% | | 26.00 M | Very Fine | 2.0 - 2.8 | | | 100% | | 2000 X | Very Fine | 2.8 - 4.0 | | | 100% | | APA 98 | Fine | 4.0 - 5.6 | | | 100% | | POR R | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 60 L | Coarse | 16.0 - 22.6 | | | 100% | | 991580 | Coarse | 22.6 - 32 | | | 100% | | 0000000 | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | _ | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (pool) | UT1 X13-Pool Pebble Count Size Class Distribution UT1 X13-Pool Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT1 X14-Riff | Te | | | DATE COLLECTED: | 9/10/2009 | | | | FIELD COLLECTION BY: | PL/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sumi | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 35 | 35% | 35% | | รัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอั | Very Fine | .063125 | 10 | 10% | 45% | | rakakakakakakakakaka
rakakakak
rakakak | Fine | .12525 | 5 | 5% | 50% | | 6555 A 6555 | Medium | .2550 | 15 | 15% | 65% | | Yayayay N | Coarse | .50 - 1.0 | 1 | 1% | 66% | | รัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสร | Very Coarse | 1.0 - 2.0 | 12 | 12% | 78% | | 26 | Very Fine | 2.0 - 2.8 | | | 78% | | 2000 00
2000 00 | Very Fine | 2.8 - 4.0 | | | 78% | | | Fine | 4.0 - 5.6 | 1 | 1% | 79% | | POR G | Fine | 5.6 - 8.0 | 1 | 1% | 80% | | | Medium | 8.0 - 11.0 | | | 80% | | VOJE DO | Medium | 11.0 - 16.0 | 3 | 3% | 83% | | 209 - P.O. | Coarse | 16.0 - 22.6 | 1 | 1% | 84% | | 294,58,G | Coarse | 22.6 - 32 | 4 | 4% | 88% | | | Very Coarse | 32 - 45 | 3 | 3% | 91% | | | Very Coarse | 45 - 64 | 4 | 4% | 95% | | | Small | 64 - 90 | 5 | 5% | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | 90 mm | |--------------------|----------| | | (riffle) | UT1 X14-Riffle Pebble Count Size Class Distribution UT1 X14-Riffle Pebble Count Particle Size Distribution | | BAKER PROJECT NO. | 108528 | |--------------------|-------------------------------------|--------| | SITE OR PROJECT: | Beaverdam Creek 3rd Year Monitoring | | | REACH/LOCATION: | UT1 X15-Riffle | | | DATE COLLECTED: | 9/10/2009 | | | FIELD COLLECTION E | BY PL/CT | | | DATA ENTRY BY: | KS | | | | | | PARTICLE CLASS COUNT | Sum | mary | |--|-----------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 9 | 9% | 9% | | | Very Fine | .063125 | 8 | 8% | 17% | | 50,000,000,000,000,000,000,000,000,000, | Fine | .12525 | 11 | 11% | 28% | | 5454545 A 545454
5454545 A 545454 | Medium | .2550 | 55 | 55% | 83% | | 606060 N 606060.
606060 D 606060. | Coarse | .50 - 1.0 | 9 | 9% | 92% | | (| Very Coarse | 1.0 - 2.0 | 5 | 5% | 97% | | 6a6a6a6 a - 6a6a6a.
6a6a6a6a6a8a6a6a | Very Fine | 2.0 - 2.8 | | | 97% | | 2000 00 00 00 00 00 00 00 00 00 00 00 00 | Very Fine | 2.8 - 4.0 | | | 97% | | 2002 | Fine | 4.0 - 5.6 | | | 97% | | PSG G SG | Fine | 5.6 - 8.0 | | | 97% | | | Medium | 8.0 - 11.0 | 1 | 1% | 98% | | | Medium | 11.0 - 16.0 | 1 | 1% | 99% | | SO GEL SO | Coarse | 16.0 - 22.6 | | | 99% | | 299-58-6 | Coarse | 22.6 - 32 | | | 99% | | | Very Coarse | 32 - 45 | | | 99% | | | Very Coarse | 45 - 64 | | | 99% | | | Small | 64 - 90 | | | 99% | | | Small | 90 - 128 | | | 99% | | COBBLE | Large | 128 - 180 | 1 | 1% | 100% | | $\bigcirc()$ | Large | 180 - 256 | | | 100% | | 007 | Small | 256 - 362 | _ | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium |
512 - 1024 | | | 100% | | 7 | arge-Very Lar | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | _ | Total | 100 | 100% | | | Largest particles: | 135 mm | | |--------------------|----------|--| | | (riffle) | | UT1 X15-Riffle Pebble Count Size Class Distribution UT1 X15-Riffle Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT1 X16-Poo | 1 | | | DATE COLLECTED: | 9/10/2009 | | | | FIELD COLLECTION BY: | PL/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sum | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 77 | 77% | 77% | | ร็อผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู้อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่ | Very Fine | .063125 | 16 | 16% | 93% | | 70,70,70,70,70,70,70,70,70,70,70,70,70,7 | Fine | .12525 | 7 | 7% | 100% | | A CONTRACTOR | Medium | .2550 | | | 100% | | Tagagaga N Tagagag
Tagagagag D Tagagag | Coarse | .50 - 1.0 | | | 100% | | ร็ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัล | Very Coarse | 1.0 - 2.0 | | | 100% | | 2002 | Very Fine | 2.0 - 2.8 | | | 100% | | 2000 X | Very Fine | 2.8 - 4.0 | | | 100% | | APA 98 | Fine | 4.0 - 5.6 | | | 100% | | POR R | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 60 - 100 C | Coarse | 16.0 - 22.6 | | | 100% | | 292 | Coarse | 22.6 - 32 | | | 100% | | | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (pool) | UT1 X16-Pool Pebble Count Size Class Distribution UT1 X16-Pool Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT1 X17-Poo | 1 | | | DATE COLLECTED: | 9/10/2009 | | | | FIELD COLLECTION BY: | PL/CT | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sumi | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 7 | 7% | 7% | | ร็อผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู้อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่ | Very Fine | .063125 | 8 | 8% | 15% | | 70,70,70,70,70,70,70,70,70,70,70,70,70,7 | Fine | .12525 | 34 | 34% | 49% | | A CONTRACTOR | Medium | .2550 | 32 | 32% | 81% | | Tagagaga N Tagagag
Tagagagag D Tagagag | Coarse | .50 - 1.0 | 11 | 11% | 92% | | ร็ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัล | Very Coarse | 1.0 - 2.0 | 7 | 7% | 99% | | 26 | Very Fine | 2.0 - 2.8 | | | 99% | | 2000 X | Very Fine | 2.8 - 4.0 | | | 99% | | APA 98 | Fine | 4.0 - 5.6 | | | 99% | | POR G | Fine | 5.6 - 8.0 | | | 99% | | | Medium | 8.0 - 11.0 | 1 | 1% | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 60 L | Coarse | 16.0 - 22.6 | | | 100% | | 2991520 | Coarse | 22.6 - 32 | | | 100% | | 0000000 | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | _ | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (pool) | UT1 X17-Pool Pebble Count Size Class Distribution UT1 X17-Pool Pebble Count Particle Size Distribution | | BAKER PROJECT NO. | 108528 | |--------------------|-------------------------------------|--------| | SITE OR PROJECT: | Beaverdam Creek 3rd Year Monitoring | | | REACH/LOCATION: | UT1 X18-Riffle | | | DATE COLLECTED: | 9/10/2009 | | | FIELD COLLECTION E | SY PL/CT | | | DATA ENTRY BY: | KS | | | | | | PARTICLE CLASS COUNT | Sum | mary | |--|-----------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | | | 0% | | | Very Fine | .063125 | 1 | 1% | 1% | | 60,000,000,000,000,000,000,000,000,000, | Fine | .12525 | 5 | 5% | 6% | | 6060606 S 86060
6060606 A 86060
6060606 A 86060 | Medium | .2550 | 15 | 15% | 21% | | Paragon N | Coarse | .50 - 1.0 | 10 | 10% | 31% | | 505050 D 15050. | Very Coarse | 1.0 - 2.0 | 5 | 5% | 36% | | 60,000,000,000,000,000,000.
60,000,000,000,000,000,000,000,000,000, | Very Fine | 2.0 - 2.8 | | | 36% | | 70047.5 | Very Fine | 2.8 - 4.0 | | | 36% | | 2012 | Fine | 4.0 - 5.6 | | | 36% | | P3 G G G G | Fine | 5.6 - 8.0 | | | 36% | | | Medium | 8.0 - 11.0 | 1 | 1% | 37% | | | Medium | 11.0 - 16.0 | 1 | 1% | 38% | | SO E SO | Coarse | 16.0 - 22.6 | 1 | 1% | 39% | | 271-80 | Coarse | 22.6 - 32 | 10 | 10% | 49% | | 700000 | Very Coarse | 32 - 45 | 35 | 35% | 84% | | 00000 | Very Coarse | 45 - 64 | 15 | 15% | 99% | | | Small | 64 - 90 | | | 99% | | | Small | 90 - 128 | 1 | 1% | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | \bigcirc | Large | 180 - 256 | | | 100% | | 007 | Small | 256 - 362 | | | 100% | | 1 | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | ırge-Very Lar | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | , , , , | | Total | 100 | 100% | | | Largest particles: | 90 mm | |--------------------|----------| | | (riffle) | UT1 X18-Riffle Pebble Count Size Class Distribution UT1 X18-Riffle Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT2A X1-Rif | ffle | | | DATE COLLECTED: | 10/27/2009 | | | | FIELD COLLECTION BY: | CT/PL | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sumi | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 10 | 10% | 10% | | รัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอัสอั | Very Fine | .063125 | | | 10% | | 70,70,70,70,70,70,70,70,70,70,70,70,70,7 | Fine | .12525 | | | 10% | | 6888 A 6888 | Medium | .2550 | | | 10% | | 7424242 N 742424
7424242 D 742424
742424 | Coarse | .50 - 1.0 | | | 10% | | รัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรั
รัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสร | Very Coarse | 1.0 - 2.0 | | | 10% | | 26.00 | Very Fine | 2.0 - 2.8 | | | 10% | | 2000 O | Very Fine | 2.8 - 4.0 | | | 10% | | PA PA | Fine | 4.0 - 5.6 | | | 10% | | POR R | Fine | 5.6 - 8.0 | | | 10% | | | Medium | 8.0 - 11.0 | | | 10% | | | Medium | 11.0 - 16.0 | | | 10% | | 60 F80 | Coarse | 16.0 - 22.6 | | | 10% | | 99158d | Coarse | 22.6 - 32 | 5 | 5% | 15% | | 000000 | Very Coarse | 32 - 45 | 44 | 44% | 59% | | | Very Coarse | 45 - 64 | 40 | 40% | 99% | | | Small | 64 - 90 | | | 99% | | | Small | 90 - 128 | 1 | 1% | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK - | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | Largest particles: 100 mm (riffle) UT2A X1-Riffle Pebble Count Size Class Distribution UT2A X1-Riffle Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|-------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | eek 3rd Year Monitoring | | | REACH/LOCATION: | UT2A X2-Poo | ol | | | DATE COLLECTED: | 10/27/2009 | | | | FIELD COLLECTION BY: | CT/PL | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sumi | mary | |---|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 100 | 100% | 100% | | รู้ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัล
รู้ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัล | Very Fine | .063125 | | | 100% | | ravavavavavavavavavava
ravavavav S ravavav
ravavav S ravavav | Fine | .12525 | | | 100% | | A BASS | Medium | .2550 | | | 100% | | 74,74,745 N 74,74,745
74,74,745 D 74,74,745 | Coarse | .50 - 1.0 | | | 100% | | รัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสร | Very Coarse | 1.0 - 2.0 | | | 100% | | 2000 | Very Fine | 2.0 - 2.8 | | | 100% | | 2000 O | Very Fine | 2.8 - 4.0 | | | 100% | | 89 A PA | Fine | 4.0 - 5.6 | | | 100% | | POR R | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 100 F80 | Coarse | 16.0 - 22.6 | | | 100% | | 299158 d | Coarse | 22.6 - 32 | | |
100% | | | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (pool) | UT2A X2-Pool Pebble Count Size Class Distribution UT2A X2-Pool Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|---------------|-------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | eek 3rd Year Monitoring | | | REACH/LOCATION: | UT2 X3-Riffle | , | | | DATE COLLECTED: | 10/27/2009 | | | | FIELD COLLECTION BY: | CT/PL | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sum | mary | |---|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 5 | 5% | 5% | | a ja ja
a ja | Very Fine | .063125 | | | 5% | | a ka ka
a ka | Fine | .12525 | | | 5% | | 2505050 A 2505050
2505050 N 2505050 | Medium | .2550 | | | 5% | | agagaga
agagaga
agagaga | Coarse | .50 - 1.0 | | | 5% | | a6a6a6a6a6a6a6a6a6a6
a6a6a6a6a6a6a6a6a6 | Very Coarse | 1.0 - 2.0 | | | 5% | | SS 555 M | Very Fine | 2.0 - 2.8 | | | 5% | | 200-00
200-00 | Very Fine | 2.8 - 4.0 | | | 5% | | 600 | Fine | 4.0 - 5.6 | | | 5% | | POR S | Fine | 5.6 - 8.0 | | | 5% | | | Medium | 8.0 - 11.0 | | | 5% | | | Medium | 11.0 - 16.0 | | | 5% | | 50g - K80 | Coarse | 16.0 - 22.6 | 1 | 1% | 6% | | 294,58,0 | Coarse | 22.6 - 32 | 25 | 25% | 31% | | | Very Coarse | 32 - 45 | 38 | 38% | 69% | | | Very Coarse | 45 - 64 | 21 | 21% | 90% | | | Small | 64 - 90 | 5 | 5% | 95% | | COBBLE | Small | 90 - 128 | 2 | 2% | 97% | | COBRLE 1 | Large | 128 - 180 | 2 | 2% | 99% | | <u> </u> | Large | 180 - 256 | | | 99% | | 20 | Small | 256 - 362 | 1 | 1% | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | _ | Total | 100 | 100% | | | Plot Size (mm) 0.063 0.125 0.25 0.50 1.0 2.0 2.8 4.0 5.6 8.0 11.3 16.0 22.6 32 45 64 90 128 180 256 362 512 1024 2048 | Distribution | |---|----------------| | 0.125 0.25 0.50 1.0 2.0 2.8 4.0 5.6 8.0 11.3 16.0 22.6 32 45 64 90 128 180 256 362 512 1024 2048 | Plot Size (mm) | | 0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048 | 0.063 | | 0.50 1.0 2.0 2.8 4.0 5.6 8.0 11.3 16.0 22.6 32 45 64 90 128 180 256 362 512 1024 2048 | 0.125 | | 1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048 | 0.25 | | 2.0 2.8 4.0 5.6 8.0 11.3 16.0 22.6 32 45 64 90 128 180 256 362 512 1024 2048 | 0.50 | | 2.8 4.0 5.6 8.0 11.3 16.0 22.6 32 45 64 90 128 180 256 362 512 1024 2048 | 1.0 | | 4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048 | 2.0 | | 5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048 | 2.8 | | 8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048 | 4.0 | | 11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048 | 5.6 | | 16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048 | 8.0 | | 22.6
32
45
64
90
128
180
256
362
512
1024
2048 | 11.3 | | 32
45
64
90
128
180
256
362
512
1024
2048 | 16.0 | | 45
64
90
128
180
256
362
512
1024
2048 | 22.6 | | 64
90
128
180
256
362
512
1024
2048 | | | 90
128
180
256
362
512
1024
2048 | 45 | | 128
180
256
362
512
1024
2048 | 64 | | 180
256
362
512
1024
2048 | 90 | | 256
362
512
1024
2048 | 128 | | 362
512
1024
2048 | 180 | | 512
1024
2048 | 256 | | 1024
2048 | 362 | | 2048 | | | | 1024 | | 5000 | 2048 | | 3000 | 5000 | Largest particles: 270 mm (riffle) UT2 X3-Riffle Pebble Count Size Class Distribution UT2 X3-Riffle Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT2 X4-Pool | | | | DATE COLLECTED: | 10/27/2009 | | | | FIELD COLLECTION BY: | CT/PL | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Sum | mary | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 95 | 95% | 95% | | ร็อผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู้อยู่อยู่อยู่อยู่
รือผู้อยู่อยู่อยู่อยู่อยู่อยู่อยู่อยู่ | Very Fine | .063125 | 5 | 5% | 100% | | ražažažažažažažažašašaš
ražažaža
ražažaž S ražažaš | Fine | .12525 | | | 100% | | A GASAS | Medium | .2550 | | | 100% | | 5050505 N 050505
5050505 D 050505
5050505 | Coarse | .50 - 1.0 | | | 100% | | รัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสร | Very Coarse | 1.0 - 2.0 | | | 100% | | 26.00 M | Very Fine | 2.0 - 2.8 | | | 100% | | 2000 X | Very Fine | 2.8 - 4.0 | | | 100% | | APA 98 | Fine | 4.0 - 5.6 | | | 100% | | POR R | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 60 - 100 C | Coarse | 16.0 - 22.6 | | | 100% | | 292 | Coarse | 22.6 - 32 | | | 100% | | | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | • | (pool) | UT2 X4-Pool Pebble Count Size Class Distribution UT2 X4-Pool Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|---------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT2 X5-Riffle | 2 | | | DATE COLLECTED: | 10/27/2009 | | | | FIELD COLLECTION BY: | CT/PL | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Summary | | |---|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Riffle | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 2 | 2% | 2% | | çağağağağağağağağağa
Çağağağağağağağağağa | Very Fine | .063125 | | | 2% | | 70,70,70,70,70,70,70,70,70,70,70,70,70,7 | Fine | .12525 | | | 2% | | A COST | Medium | .2550 | | | 2% | | ražažaši N ražažaši
ražažaši D ražažaši
ražažaši | Coarse | .50 - 1.0 | | | 2% | | Yayayayayayayayaya
Yayayayayayayayayaya
Yayayayay | Very Coarse | 1.0 - 2.0 | 2 | 2% | 4% | | 30,000 | Very Fine | 2.0 - 2.8 | | | 4% | | 2000 OX | Very Fine | 2.8 - 4.0 | | | 4% | | 2020 | Fine | 4.0 - 5.6 | | | 4% | | POR RIVE | Fine | 5.6 - 8.0 | | | 4% | | | Medium | 8.0 - 11.0 | | | 4% | | | Medium | 11.0 - 16.0 | | | 4% | | 60 F60 | Coarse | 16.0 - 22.6 | 3 | 3% | 7% | | 991500 | Coarse | 22.6 - 32 | 19 | 19% | 26% | | 000000 | Very Coarse | 32 - 45 | 58 | 58% | 84% | | | Very Coarse | 45 - 64 | 10 | 10% | 94% | | | Small | 64 - 90 | 2 | 2% | 96% | | | Small | 90 - 128 | 3 | 3% | 99% | | COBBLE | Large | 128 - 180 | 1 | 1% | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | _ | 100% | | | | Total | 100 | 100% | | Largest particles: 120 mm (riffle) UT2 X-5 Riffle Pebble Count Size Class Distribution UT2 X5-Riffle Pebble Count Particle Size Distribution | | | BAKER PROJECT NO. | 108528 | |----------------------|--------------|--------------------------|--------| | SITE OR PROJECT: | Beaverdam Cr | reek 3rd Year Monitoring | | | REACH/LOCATION: | UT2 X6-Pool | | | | DATE COLLECTED: | 10/27/2009 | | | | FIELD COLLECTION BY: | CT/PL | | | | DATA ENTRY BY: | KS | | | | | | | PARTICLE CLASS COUNT | Summary | | |--|------------------|-------------|----------------------|---------|-------| | MATERIAL | PARTICLE | SIZE (mm) | Pool | Class % | % Cum | | SILT/CLAY | Silt / Clay | < .063 | 50 | 50% | 50% | | รู้ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัล
รู้ออัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัลอัล | Very Fine | .063125 | 30 | 30% | 80% | | ravavavavavavavavavavav
ravavavav S pravavav
ravavavav S pravavav | Fine | .12525 | 15 | 15% | 95% | | A STATE | Medium | .2550 | | | 95% | | \$4\$4\$4\$ N 4\$4\$4\$
\$4\$4\$4\$ D 4\$4\$4\$
\$4\$4\$4\$ | Coarse | .50 - 1.0 | | | 95% | |
รัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรั
รัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสรัสร | Very Coarse | 1.0 - 2.0 | | | 95% | | 2000 | Very Fine | 2.0 - 2.8 | 5 | 5% | 100% | | 2000 O | Very Fine | 2.8 - 4.0 | | | 100% | | PA 28 | Fine | 4.0 - 5.6 | | | 100% | | POR R | Fine | 5.6 - 8.0 | | | 100% | | | Medium | 8.0 - 11.0 | | | 100% | | | Medium | 11.0 - 16.0 | | | 100% | | 100 F80 | Coarse | 16.0 - 22.6 | | | 100% | | 299158 d | Coarse | 22.6 - 32 | | | 100% | | | Very Coarse | 32 - 45 | | | 100% | | | Very Coarse | 45 - 64 | | | 100% | | | Small | 64 - 90 | | | 100% | | | Small | 90 - 128 | | | 100% | | COBBLE | Large | 128 - 180 | | | 100% | | 000 | Large | 180 - 256 | | | 100% | | 20 | Small | 256 - 362 | | | 100% | | | Small | 362 - 512 | | | 100% | | BOULDER | Medium | 512 - 1024 | | | 100% | | | Large-Very Large | 1024 - 2048 | | | 100% | | BEDROCK | Bedrock | > 2048 | | | 100% | | | | Total | 100 | 100% | | | Largest particles: | | |--------------------|--------| | | (pool) | UT2 X6-Pool Pebble Count Size Class Distribution UT2 X6-Pool Pebble Count Particle Size Distribution ## APPENDIX C AS-BUILT PLAN SHEETS # BEAVERDAM CREEK STREAM RESTORATION AS-BUILT PLANS #### INDEX OF SHEETS TITLE SHEET LEGEND T2 REFERENCE SHEET AS-BUILT PLANS T1 T2 R1-R4 P1-P23 CENTER OF PROJECT: LAT: 35-10-21.7 LONG: 80-59-08.5 UII PRE-PROJECT STREAM LENGTH = 8,148 LF AS-BUILT STREAM RESTORATION LENGTH = 8,617 LF UT2 PRE-PROJECT STREAM LENGTH = 4,016 LF AS-BUILT STREAM RESTORATION LENGTH = 4,377 LF PRESERVATION LENGTH = 962 LF BEAVERDAM CREEK PRESERVATION LENGTH = 1,641 LF BEAVERDAM CREEK AS-BUILT WITH BMPS TITLE SHEET ### CONVENTIONAL SYMBOLS AS-BUILT THALWEG — - 10+00 - DESIGN THALWEG ---- EXISTING MAJOR CONTOUR ---- EXISTING MINOR CONTOUR - E - CONSERVATION EASEMENT CONSTRUCTED RIFFLE EXISTING TREE _____ LOG SILL FLOW DIRECTION ROCK CROSS VANE BOULDER CLUSTER PHOTO ID POINT SURVEY CONTROL POINT ROCK VANE L: \Projects\0289C\Design\Pions\AS-BUILT-PLANSHEETS.deg Dec 08, 2008 PROJECT REFERENCE NO. SHEET NO. 108528 T2 PROJECT ENGINEER KLT APPROVED BY WAH DATE 10/11/2007 Baker Book 1945 Service Servic BEAVERDAM CREEK AS-BUILT WITH BMPS LEGEND BEAVERDAM CREEK AS-BUILT WITH BMPS REFERENCE SHEET | NO SUCCE NO | _ | |--------------------|---| | R4 | - | | PROJECT ENGINEER | | | <u>KLT</u> | | | APPROVED BY | | | WAH | | | DATE
10/11/2007 | | | | PROJECT ENGINEER KLT APPROVED BY WAH DATE | Baker L: Projects 02690 Design Plans AS-BUILT-PLANSHEETS. dwg Dec 08, 2008 BEAVERDAM CREEK AS-BUILT WITH BMPS REFERENCE SHEET PROJECT REFERENCE NO. SHEET NO. 108528 P22 KLT APPROVED BY WAH 10/11/2007 WATERS CONSTRUCTION COMPANY, INC. TAX 19925103 DB 12629 PG 902 DIXIE RIVER ROAD Baker BCP #798 REBAR N 522198.66 E 1408698.04 ELEV = 618.69 PHOTO ID POINT BCP #2380 REBAR N 522361,78 E 1408795.08 ELEV# XXX BCP #2273 REBAR N 522316.91 E 1408711.70 ELEV. XXX WATERS CONSTRUCTION COMPANY, INC. TAX 19925103 DB 12629 PC 902 DIXIE RIVER ROAD BEAVERDAM CREEK AS-BUILT WITH BMPS SCALE (FT) UT2-A SITE PLAN L: \Projects\0289C\Design\Plans\AS-BUILT-PLANSHETS.deg Dec 06, 2008 ## APPENDIX D BASELINE STREAM SUMMARY FOR RESTORATION REACHES | | | | | Beaverdar | n Creek Re | storation S | lite - UT1 (l | Reach 1) | | | | | | | | |--|--------|--------|-------|-----------|------------|-------------|---------------|----------------|-----|----------|-------------|-------|-------|---------------|---------| | Parameter | | Design | | | As-built | | | MY-1 (2007) |) | N | IY-2 (2008) | | : | MY-3 (2009 |) | | Dimension - Riffle | Min | Mean | Max | | Bankfull Width (ft) | | 14.6 | | | 12.5 | | | 13.1 | | | 12.8 | | | 12.7 | | | Floodprone Width (ft) | | 45.0 | | | 74.6 | | | 74.6 | | | 74.7 | | | 74.6 | | | Bankfull Mean Depth (ft) | | 1.5 | | | 1.4 | | | 1.4 | | | 1.4 | | | 1.3 | | | Bankfull Max Depth (ft) | | 2.1 | | | 2.0 | | | 2.1 | | | 2.0 | | | 1.9 | | | Bankfull Cross Sectional Area (ft2) | | 21.0 | | | 18.0 | | | 18.8 | | | 17.8 | | | 16.9 | | | Width/Depth Ratio | | 10.0 | | | 8.7 | | | 9.2 | | | 9.1 | | | 9.6 | | | Entrenchment Ratio | | 3.1 | | | 6.0 | | | 5.7 | | | 5.9 | | | 5.9 | | | Bank Height Ratio | | 1.0 | | | 1.0 | | | 1.0 | | | 1.0 | | | 1.0 | | | Bankfull Velocity (fps) | | 3.5 | | | | | | | | | | | | | | | Pattern | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | | 0 | | | | | | | | | | | | | | | Radius of Curvature (ft) | 0 | | 15 | | | | | | | | | | | | | | Meander Wavelength (ft) | 0 | | 29 | | | | | | | | | | | | | | Meander Width Ratio | | 0 | | | | | | | | | | | | | | | Profile | | | | | | | | | | | | | | | | | Riffle Length (ft) | | | | | | | | | | | | | | | | | Riffle Slope (ft/ft) | 0.0067 | | 0.009 | | | | | | | | | 0.009 | | | 0.014 | | Pool Length (ft) | | | | | | | | | | | | | | | | | Pool Spacing (ft) | | 43.8 | | | | | | | | 23 | 54 | 91 | 16 | 57 | 97 | | Substrate and Transport Parameters | | | | | | | | | | | | | | | | | d16 / d35 / d50 / d84 / d95 | | | | | | | 25 / | 36 / 42 / 75 / | 105 | 0.12 / 4 | 0/50/110 | / 160 | <.063 | 0.5 / 59 / 11 | 0 / 140 | | Reach Shear Stress (competency) lb/f2 | | | | | | | | | | | | | | | | | Stream Power (transport capacity) W/m2 | | | | | | | | | | | | | | | | | Additional Reach Parameters | | | | | | | | | | | | | | | | | Channel length (ft) | | | 555 | | | 567 | | | 568 | | | 563 | | | 562 | | Drainage Area (SM) | | | 0.7 | | | 0.7 | | | 0.7 | | | 0.7 | | | 0.7 | | Rosgen Classification | | Bc | | | | | | C | | | C | | | C | | | Bankfull Discharge (cfs) | | 75 | | | | | | | | | | | | | | | Sinuosity | | 1.02 | | | | | | 1.05 | | | 1.04 | | | 1.04 | | | BF slope (ft/ft) | Bea | verdam Cr | eek Resto | ration Site - | · UT1 (Rea | ch 2-5) | | | | | | | |--|--------|--------|-------|------|-----------|-----------|----------------|----------------|-----------------|------------|----------------------|---------------------|----------------|----------------|------------------| | Parameter | | Design | | | As-built | | | MY-1 (200° | 7) | | MY-2 (20 | 08) | | MY-3 (2009 |)) | | Dimension - Riffle | Min | Mean | Max | | Bankfull Width (ft) | 16.8 | | 20.0 | 15.4 | | 23.0 | 15.2 | | 26.9 | 15.3 | | 26.0 | 15.1 | | 26.0 | | Floodprone Width (ft) | | 100.0 | | 74.9 | | 80.7 | 74.9 | | 80.7 | 74.8 | | 80.6 | 73.5 | | 80.7 | | Bankfull Mean Depth (ft) | 1.7 | | 2.0 | 1.7 | | 2.1 | 1.5 | | 2.2 | 1.5 | | 2.4 | 1.5 | | 2.1 | | Bankfull Max Depth (ft) | 2.4 | | 2.9 | 2.5 | | 4.1 | 2.3 | | 4.1 | 2.4 | | 4.7 | 2.3 | | 3.7 | | Bankfull Cross Sectional Area (ft2) | 28.0 | | 40.0 | 25.6 | | 26.8 | 23.8 | | 59.7 | 23.6 | | 62.4 | 22.8 | | 54.0 | | Width/Depth Ratio | 9.8 | | 10.1 | 9.2 | | 13.9 | 9.6 | | 14.6 | 9.9 | | 15.7 | 10.0 | | 15.2 | | Entrenchment Ratio | 5.0 | | 6.0 | 3.4 | | 4.9 | 2.9 | | 4.9 | 3.0 | | 4.9 | 3.0 | | 5.0 | | Bank Height Ratio | | 1.0 | | | 1.0 | | | 1.0 | | | 1.0 | | | 1.0 | | | Bankfull Velocity (fps) | 3.1 | | 3.8 | | | | | | | | | | | | | | Pattern | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | 84 | | 100 | | | | | | | | | | | | | | Radius of Curvature (ft) | 34 | | 60 | | | | | | | | | | | | | | Meander Wavelength (ft) | 134 | | 200 | | | | | | | | | | | | | | Meander Width Ratio | 2 | | 10 | | | | | | | | | | | | | | Profile | | | | | | | | | | | | | | | | | Riffle Length (ft) | | | | | | | | | | | | | | | | | Riffle Slope (ft/ft) | 0.0048 | | 0.012 | | | | | | | 0.008 | 0.011 | 0.018 | 0.008 | 0.011 | 0.013 | | Pool Length (ft) | | | | | | | | | | | | | | | | | Pool Spacing (ft) | 101 | | 120 | | | | | | | 72 | 108 | 144 | 67 | 114 | 146 | | Substrate and Transport Parameters | | | | | | | | | | | | | | | | | d16 / d35 / d50 / d84 / d95 | | | | | | | 0.17-25 / 0.75 | 5-37 / 30-45 / | 70-85 / 110-120 | 0.1-32 / 0 | .26-46 / 0.37 - 64 / | 1.0 - 145 / 5.6-178 | 53-1.6 / 0.063 | 3-47 / 0.26-70 | / 0.55-140 / 1.4 | | Reach Shear Stress (competency) lb/f2 | | | | | | | | | | | | | | | | | Stream Power (transport capacity) W/m2 | | | | | | | | | | | | | | | | | Additional Reach Parameters | | | | | | | | | | | | | | | | | Channel length (ft) | | | 6155 | | | 5897 | | | 3021 | | | 3023 | | | 3000 | | Drainage Area (SM) | 0.7 | | 1.75 | 0.7 | | 1.75 | 0.7 | | 1.75 | 0.7 | | 1.75 | 0.7 | | 1.75 | | Rosgen Classification | | C/E | | | | | | C | | | C | | | C | | | Bankfull Discharge (cfs) | 105 | | 155 | | | | | | | | | | | | | | Sinuosity | 1.1 | | 1.2 | | | | | 1.3 | | | 1.3 | | | 1.3 | | | BF slope (ft/ft) | 0.002 | | 0.006 | | | | | | | | | | | | | | | | | | Be | averdam C | reek Res | toration S | ite - UT1B | 3 | | | | | | | |--|--------|--------|--------|-----|-----------|----------|-------------|--------------|----------------|-----|-----------------|-------------|--------------|---------------|---------------| | Parameter | | Design | | | As-built | | I | MY-1 (2007 | 7) | | MY-2 (20 | 08) | | MY-3 (2009 |) | | Dimension - Riffle | Min | Mean | Max | | Bankfull Width (ft) | | 10.4 | | | 11.1 | | | 11.8 | | | 11.1 | | | 10.8 | | | Floodprone Width (ft) | | 100.0 | | | 75.0 | | | 75.0 | | | 75.0 | | | 75.0 | | | Bankfull Mean Depth (ft) | | 1.1 | | | 1.4 | | | 1.4 | | | 1.4 | | | 1.3 | | | Bankfull Max Depth (ft) | | 1.4 | | | 2.3 | | | 2.3 | | | 2.4 | | | 2.4 | | | Bankfull Cross Sectional Area (ft2) | | 11.0 | | | 15.3 | | | 16.5 | | | 15.6 | | | 14.1 | | | Width/Depth Ratio | | 9.7 | | | 8.0 | | | 8.5 | | | 7.9 | | | 8.3 | | | Entrenchment Ratio | | 9.6 | | | 6.8 | | | 6.3 | | | 6.8 | | | 6.9 | | | Bank Height Ratio | | 1.0 | | | 1.0 | | | 1.0 | | | 1.0 | | | 1.0 | | | Bankfull Velocity (fps) | | 4.0 | | | | | | | | | | | | | | | Pattern | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | | 52 | | | | | | | | | | | | | | | Radius of Curvature (ft) | 21 | | 31 | | | | | | | | | | | | | | Meander Wavelength (ft) | 83 | | 104 | | | | | | | | | | | | | | Meander Width
Ratio | | 5 | | | | | | | | | | | | | | | Profile | | | | | | | | | | | | | | | | | Riffle Length (ft) | | | | | | | | | | | | | | | | | Riffle Slope (ft/ft) | 0.0104 | | 0.0138 | | | | | | | | | | | | | | Pool Length (ft) | | | | | | | | | | | | | | | | | Pool Spacing (ft) | | 52 | | | | | | | | | | | | | | | Substrate and Transport Parameters | | | | | | | | | | | | | | | | | d16 / d35 / d50 / d84 / d95 | | | | | | | <0.063 / <0 | .063 / <0.00 | 63 / 0.2 / 0.4 | 0.0 | 65 / 0.09 / 1.1 | / 0.3 / 0.4 | <0.063 / <0. | .063 / <0.063 | / 0.13 / 0.39 | | Reach Shear Stress (competency) lb/f2 | | | | | | | | | | | | | | | | | Stream Power (transport capacity) W/m2 | | | | | | | | | | | | | | | | | Additional Reach Parameters | | | | | | | | | | | | | | | | | Channel length (ft) | | | 790 | | | 778 | | | 775 | | | | | | | | Drainage Area (SM) | | | 0.34 | | | 0.34 | | | 0.34 | | | 0.34 | | | 0.34 | | Rosgen Classification | | C/E | | | C | | | C | | | C | | | C | | | Bankfull Discharge (cfs) | | 45 | | | | | | | | | | | | | | | Sinuosity | | 1.15 | | | 1.1 | | | 1.1 | | | | | | | | | BF slope (ft/ft) | | 0.003 | | | 0.013 | | | | | | | | | | | | | | | | Beav | verdam Cre | ek Restora | tion Site - U | JT1C | | | | | | | | |--|--------|--------|--------|------|------------|------------|---------------|----------------|-------|--------|---------------|-------|--------|---------------|---------| | Parameter | | Design | | | As-built | | | MY-1 (2007 |) |] | MY-2 (2008) |) | | MY-3 (2009 |) | | Dimension - Riffle | Min | Mean | Max | | Bankfull Width (ft) | | 11.2 | | | 11.0 | | | 12.0 | | | 13.2 | | | 12.0 | | | Floodprone Width (ft) | | 100.0 | | | 70.2 | | | 70.6 | | | 71.2 | | | 71.1 | | | Bankfull Mean Depth (ft) | | 0.8 | | | 0.7 | | | 0.7 | | | 0.7 | | | 0.7 | | | Bankfull Max Depth (ft) | | 0.9 | | | 1.0 | | | 1.1 | | | 1.1 | | | 1.1 | | | Bankfull Cross Sectional Area (ft2) | | 8.0 | | | 7.8 | | | 8.8 | | | 9.5 | | | 8.6 | | | Width/Depth Ratio | | 14.8 | | | 15.6 | | | 16.5 | | | 18.4 | | | 16.9 | | | Entrenchment Ratio | | 8.9 | | | 6.4 | | | 5.9 | | | 5.4 | | | 5.9 | | | Bank Height Ratio | | 1.0 | | | 1.0 | | | 1.0 | | | 1.0 | | | 1.0 | | | Bankfull Velocity (fps) | | 3.2 | | | | | | | | | | | | | | | Pattern | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | | | | | | | | | | | | | | | | | Radius of Curvature (ft) | | | | | | | | | | | | | | | | | Meander Wavelength (ft) | | | | | | | | | | | | | | | | | Meander Width Ratio | | | | | | | | | | | | | | | | | Profile | | | | | | | | | | | | | | | | | Riffle Length (ft) | | | | | | | | | | | | | | | | | Riffle Slope (ft/ft) | 0.0191 | | 0.0265 | | | | | | | | | | | | | | Pool Length (ft) | | | | | | | | | | | | | | | | | Pool Spacing (ft) | | 44.8 | | | | | | | | | | | | | | | Substrate and Transport Parameters | | | | | | | | | | | | | | | | | d16 / d35 / d50 / d84 / d95 | | | | | | | 26 / | 37 / 42 / 75 / | / 100 | 36 / 5 | 50 / 64 / 110 | / 130 | 0.33 / | 40 / 60 / 130 |) / 160 | | Reach Shear Stress (competency) lb/f2 | | | | | | | | | | | | | | | | | Stream Power (transport capacity) W/m2 | | | | | | | | | | | | | | | | | Additional Reach Parameters | | | | | | | | | | | | | | | | | Channel length (ft) | | | 628 | | | 616 | | | 615 | | | | | | | | Drainage Area (SM) | | | 0.15 | | | 0.15 | | | 0.15 | | | 0.15 | | | 0.15 | | Rosgen Classification | | В | | | C | | | С | | | C | | | C | | | Bankfull Discharge (cfs) | | 27 | | | | | | | | | | | | | | | Sinuosity | | 1.05 | | | 1.1 | | | 1.1 | | | | | | | | | BF slope (ft/ft) | | 0.017 | | | 0.013 | | | | | | | | | | | | Bi stope (tett) | | 0.017 | | | 0.015 | | | | | | | | | | | | | | | | Beav | erdam Cre | ek Restora | tion Site - U | J T1D | | | | | | | | |--|-----|--------|------|------|-----------|------------|---------------|----------------|------|------|--------------|------|--------|---------------|--------| | Parameter | | Design | | | As-built | | | MY-1 (2007) |) |] | MY-2 (2008) |) | | MY-3 (2009) |) | | Dimension - Riffle | Min | Mean | Max | | Bankfull Width (ft) | | 10.4 | | | 11.4 | | | 12.7 | | | 11.4 | | | 13.1 | | | Floodprone Width (ft) | | 100.0 | | | 75.5 | | | 75.5 | | | 75.5 | | | 75.3 | | | Bankfull Mean Depth (ft) | | 0.9 | | | 0.8 | | | 0.7 | | | 0.8 | | | 0.7 | | | Bankfull Max Depth (ft) | | 1.2 | | | 1.2 | | | 1.1 | | | 1.1 | | | 1.1 | | | Bankfull Cross Sectional Area (ft2) | | 10.0 | | | 9.0 | | | 9.2 | | | 9.0 | | | 8.6 | | | Width/Depth Ratio | | 11.2 | | | 14.4 | | | 17.5 | | | 14.4 | | | 19.9 | | | Entrenchment Ratio | | 9.6 | | | 6.6 | | | 6.0 | | | 6.6 | | | 5.8 | | | Bank Height Ratio | | 1.0 | | | 1.0 | | | 1.0 | | | 1.0 | | | 1.0 | | | Bankfull Velocity (fps) | | 2.9 | | | | | | | | | | | | | | | Pattern | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | | 52 | | | | | | | | | | | | | | | Radius of Curvature (ft) | 21 | | 31 | | | | | | | | | | | | | | Meander Wavelength (ft) | 83 | | 104 | | | | | | | | | | | | | | Meander Width Ratio | 8 | | 10 | | | | | | | | | | | | | | Profile | | | | | | | | | | | | | | | | | Riffle Length (ft) | | | | | | | | | | | | | | | | | Riffle Slope (ft/ft) | | | | | | | | | | | | | | | | | Pool Length (ft) | | | | | | | | | | | | | | | | | Pool Spacing (ft) | | 52 | | | | | | | | | | | | | | | Substrate and Transport Parameters | | | | | | | | | | | | | | | | | d16 / d35 / d50 / d84 / d95 | | | | | | | 32 / | 38 / 43 / 85 / | 120 | 25 / | 33 / 38 / 60 | / 88 | 0.12 / | 0.19 / 26 / 5 | 0 / 68 | | Reach Shear Stress (competency) lb/f2 | | | | | | | | | | | | | | | | | Stream Power (transport capacity) W/m2 | | | | | | | | | | | | | | | | | Additional Reach Parameters | | | | | | | | | | | | | | | | | Channel length (ft) | | | 352 | | | 338 | | | 334 | | | | | | | | Drainage Area (SM) | | | 0.16 | | | 0.16 | | | 0.16 | | | 0.16 | | | 0.16 | | Rosgen Classification | | C/E | | | C | | | C | | | C | | | C | | | Bankfull Discharge (cfs) | | 28 | | | | | | | | | | | | | | | Sinuosity | | 1.15 | | | 1.2 | | | 1.2 | | | | | | | | | BF slope (ft/ft) | | 0.007 | | | 0.014 | | | | | | | | | | | | | | | | Bea | verdam Cr | eek Resto | ration Site | - UT2 | | | | | | | | |--|--------|--------|--------|------|-----------|-----------|-------------|-----------------|----------|-------------|------------------|-----------------|------------|----------------|------------| | Parameter | | Design | | | As-built | | 1 | MY-1 (2007) |) | | MY-2 (2008 | 8) | | MY-3 (2009) |) | | Dimension - Riffle | Min | Mean | Max | | Bankfull Width (ft) | 10.2 | | 15.6 | 16.8 | | 16.9 | 16.1 | | 16.6 | 16.2 | | 17.3 | 17.0 | | 17.1 | | Floodprone Width (ft) | 30.0 | | 80 | 39.9 | | 39.9 | 39.9 | | 39.9 | 39.9 | | 40.0 | 39.8 | | 40.0 | | Bankfull Mean Depth (ft) | 0.92 | | 1.5 | 0.7 | | 1.4 | 0.7 | | 1.4 | 0.7 | | 1.3 | 0.7 | | 1.4 | | Bankfull Max Depth (ft) | 1.3 | | 2.3 | 1.1 | | 2.1 | 1.1 | | 1.9 | 1.1 | | 1.9 | 1.0 | | 2.1 | | Bankfull Cross Sectional Area (ft2) | 9.9 | | 23.9 | 12.2 | | 23.4 | 10.9 | | 22.6 | 11.2 | | 21.4 | 11.2 | | 23.4 | | Width/Depth Ratio | 10.2 | | 12.6 | 12.1 | | 23.4 | 12.2 | | 23.9 | 12.3 | | 26.6 | 12.4 | | 25.9 | | Entrenchment Ratio | 2.8 | | 5.9 | 2.4 | | 2.4 | 2.4 | | 2.5 | 2.3 | | 2.5 | 2.3 | | 2.3 | | Bank Height Ratio | | 1.0 | | | 1.0 | | 1 | | 1.0 | | 1.0 | | | 1.0 | | | Bankfull Velocity (fps) | 4.7 | | 5.4 | | | | | | | | | | | | | | Pattern | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | 20 | | 75 | | | | | | | | | | | | | | Radius of Curvature (ft) | 23 | | 100 | | | | | | | | | | | | | | Meander Wavelength (ft) | 100 | | 300 | | | | | | | | | | | | | | Meander Width Ratio | 9.6 | | 27.8 | | | | | | | | | | | | | | Profile | | | | | | | | | | | | | | | | | Riffle Length (ft) | | | | | | | | | | | | | | | | | Riffle Slope (ft/ft) | 0.0122 | | 0.0279 | | | | | | | | | | | | | | Pool Length (ft) | | | | | | | | | | | | | | | | | Pool Spacing (ft) | 40 | | 105 | | | | | | | | | | | | | | Substrate and Transport Parameters | | | | | | | | | | | | | | | | | d16 / d35 / d50 / d84 / d95 | | | | | | | 26-27 / 3 | 35 / 39-39 / 53 | -59 / 95 | 0.13-25 / 2 | 6-35 / 36-40 / 6 | 60-64 / 115-140 | 26-27 / 33 | -34 / 38 / 45- | 58 / 65-90 | | Reach Shear Stress (competency) lb/f2 | | | | | | | | | | | | | | | | | Stream Power (transport capacity) W/m2 | | | | | | | | | | | | | | | | | Additional Reach Parameters | | | | | | | | | | | | | | | | | Channel length (ft) | | | 3290 | | | 3293 | | | 3142 | | | | | | | | Drainage Area (SM) | 0.1 | | 0.3 | 0.1 | | 0.3 | 0.1 | | 0.3 | 0.1 | | 0.3 | 0.1 | | 0.3 | | Rosgen Classification | | C | | | C | | | C | | | C | | | C | | | Bankfull Discharge (cfs) | 48 | | 120 | | | | | | | | | | | | | | Sinuosity | 1.03 | | 1.21 | | 1.3 | | | 1.3 | | | | | | | | | BF slope (ft/ft) | 0.008 | | 0.019 | | 0.0138 | | | | | | | | | | | | | | | Beaverdan | n Creek R | estoration S | ite - UT2A | | | | | | | | | | |--|------|--------|-----------|-----------|--------------|------------|------|----------------|------|---------|-----------------|--------|------|--------------|------| | Parameter | | Design | | | As-built | | | MY-1 (2007) |) | 1 | MY-2 (2008) |) | | MY-3 (2009 |) | | Dimension - Riffle | Min | Mean | Max | | Bankfull Width (ft) | | 15.6 | | | 13.3 | | | 12.2 | | | 13.4 | | | 12.6 | | | Floodprone Width (ft) | | 80.0 | | | 39.8 | | | 39.8 | | | 39.9 | | | 39.9 | | | Bankfull Mean Depth (ft) | | 1.0 | | | 0.8 | | | 0.8 | | | 0.8 | | | 0.7 | | | Bankfull Max Depth (ft) | | 1.4 | | | 1.2 | | | 1.1 | | | 1.2 | | | 1.0 | | | Bankfull Cross Sectional Area (ft2) | | 10.2 | | | 10.6 | | | 9.6 | | | 10.4 | | | 9.1 | | | Width/Depth Ratio | | 10.2 | | | 16.6 | | | 15.5 | | | 17.2 | | | 17.4 | | | Entrenchment Ratio | | 5.9 | | | 3.0 | | | 3.3 | | | 3.0 | | | 3.2 | | | Bank Height Ratio | | 1.0 | | | 1.0 | | | 1 | | |
1.0 | | | 1.0 | | | Bankfull Velocity (fps) | | 5.1 | | | | | | | | | | | | | | | Pattern | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | 40 | | 55 | | | | | | | | | | | | | | Radius of Curvature (ft) | 24 | | 30 | | | | | | | | | | | | | | Meander Wavelength (ft) | 100 | | 120 | | | | | | | | | | | | | | Meander Width Ratio | 9.8 | | 11.8 | | | | | | | | | | | | | | Profile | | | | | | | | | | | | | | | | | Riffle Length (ft) | | | | | | | | | | | | | | | | | Riffle Slope (ft/ft) | 0.02 | | 0.0273 | | | | | | | | | | | | | | Pool Length (ft) | | | | | | | | | | | | | | | | | Pool Spacing (ft) | | 57 | | | | | | | | | | | | | | | Substrate and Transport Parameters | | | | | | | | | | | | | | | | | d16 / d35 / d50 / d84 / d95 | | | | | | | 26 / | 30 / 35 / 53 / | / 78 | < 0.063 | 3 / 33 / 40 / 6 | 0 / 83 | 32 / | 37 / 42 / 57 | / 61 | | Reach Shear Stress (competency) lb/f2 | | | | | | | | | | | | | | | | | Stream Power (transport capacity) W/m2 | | | | | | | | | | | | | | | | | Additional Reach Parameters | | | | | | | | | | | | | | | | | Channel length (ft) | | | 1099 | | | 1131 | | | 1121 | | | | | | | | Drainage Area (SM) | | | 0.1 | | | 0.1 | | | 0.1 | | | 0.1 | | | 0.1 | | Rosgen Classification | | C/E | | | C | | | C | | | C | | | C | | | Bankfull Discharge (cfs) | | 51 | | | | | | | | | | | | | | | Sinuosity | | 1.21 | | | 1.25 | | | 1.22 | | | | | | | | | BF slope (ft/ft) | | 0.012 | | | 0.015 | | | | | | | | | | | ## APPENDIX E MORHOLOGY AND HYDRAULIC MONITORING SUMMARY | | | Be | averdam C | reek Res | storation S | Site : Pr | oject N | lo. D05 | 5016-1 | | | | | | | | |-------------------------------|---------|----------------|-----------|----------|-------------|-----------|---------|---------|--------|--------|-----|---------|-------|-------|---------|------| | | | | Reac | h: Beave | rdam Cre | eek UT1 | (Reac | h 1) | | | | | | | | | | | | Cross | Section 1 | | | | Section | n 2 | | | | | | | | | | I. Cross-Section Parameters | | | Pool | | | | iffle | | | | | | | | | | | | MY1 | MY2 | MY3 MY | 4 MY5 | MY1 | MY2 | MY3 | MY4 | MY5 | | | | | | | | | Dimension | | | | | | | | | | | | | | | | | | BF Width (ft) | 22.1 | 19.9 | 18.4 | | 13.1 | 12.8 | 12.7 | | | | | | | | | | | Floodprone Width (ft) | 75.1 | 75.2 | 75.0 | | 74.6 | 74.7 | 74.6 | | | | | | | | | | | BF Cross Sectional Area (ft2) | 33.1 | 31.8 | 28.1 | | 18.8 | 17.8 | 16.9 | | | | | | | | | | | BF Mean Depth (ft) | 1.5 | 1.6 | 1.5 | | 1.4 | 1.4 | 1.3 | | | | | | | | | | | BF Max Depth (ft) | 3.1 | 2.9 | 2.9 | | 2.1 | 2.0 | 1.9 | | | | | | | | | | | Width/Depth Ratio | 14.8 | 12.4 | 12.1 | | 9.2 | 9.1 | 9.6 | | | | | | | | | | | Entrenchment Ratio | 3.4 | 3.8 | - | | 5.7 | 5.9 | 5.9 | | | | | | | | | | | Wetted Perimeter (ft) | 25.1 | 23.1 | 21.5 | | 16.0 | 15.6 | 15.4 | | | | | | | | | | | Hydraulic Radius (ft) | 1.3 | 1.4 | 1.3 | | 1.2 | 1.1 | 1.1 | | | | | | | | | | | Substrate | | | | | | | | | | | | | | | | | | d50 (mm) | < 0.063 | 0.1 | 0.1 | | 42 | 50 | 59 | | | | | | | | | | | d84 (mm) | < 0.063 | 0.3 | 0.33 | | 75 | 110 | 110 | | | | | | | | | | | W D 1 11 D | N | 1Y-1 (2 | (007) | | MY-2 (| 2008) | | | MY-3 (| (2009) | N | ЛY-4 (2 | 2010) | M | IY-5 (2 | 011) | | II. Reachwide Parameters | Min | Max | Med | Min | Max | M | ed | Min | Max | Med | Min | Max | Med | Min I | Max | Med | | Pattern | | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | Radius of Curvature (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | Meander Wavelength (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | Meander Width Ratio | - | - | - | - | - | | - | - | - | - | | | | | | | | Profile | | | | | | | | | | | | | | | | | | Riffle length (ft) | - | - | - | - | - | | - | - | _ | - | | | | | | | | Riffle Slope (ft/ft) | - | - | - | - | 0.009 | 0.0 | 009 | | 0.01 | 0.01 | | | | | | | | Pool Length (ft) | - | - | - | - | - | | - | - | _ | - | | | | | | | | Pool Spacing (ft) | - | - | - | 23 | 91 | 5 | 1 | 16 | 97 | 57 | Additional Reach Parameters | | | | | | | | | | | | | | | | | | Valley Length (ft) | 540 | - | - | 540 | - | | - | 540 | - | - | | | | | | | | Channel Length (ft) | 568 | - | - | 563 | - | | - | 562 | - | - | | | | | | | | Sinuosity | 1.1 | - | - | 1.04 | - | | - | 1.04 | - | - | | | | | | | | Water Surface Slope (ft/ft) | _ | - | - | - | - | | - | - | - | - | | | | | | | | BF Slope (ft/ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | Rosgen Classification | C | - | - | С | - | | - | C/E | - | - | | | | | | | | | | | Bea | verdam | Creek R | estoratio | n Site : 1 | Project | No. D0 | 5016-1 | | | | | | | | |-------------------------------|------|---------|-----------|--------|-----------|-----------|-------------|---------|----------|----------|-------|---------|-----------|---------|-------|-----------|---------| | | | | | Reac | h: Beaver | rdam Cr | eek UT1 | (Reach | nes 2-5) | | | | | | | | | | | | Cross | Section 5 | | | Cross | Section | 6 | | | Cross | Section | 19 | | Cross | Section 1 | 0 | | I. Cross-Section Parameters | | | iffle | | | | Pool | | | | | iffle | | | | Pool | | | | MY1 | MY2 | MY3 MY4 | MY5 | MY1 | MY2 | MY3 | MY4 | MY5 | MY1 | MY2 | MY3 | MY4 MY5 | MY1 | MY2 | MY3 | MY4 MY5 | | Dimension | | | | | | | | | | | | | | | | | | | BF Width (ft) | 15.2 | | 15.1 | | 23.5 | 23.6 | 23.3 | | | 17.8 | | 17.4 | | 22.2 | 22.4 | 23.5 | | | Floodprone Width (ft) | 74.9 | | 74.9 | | 75.0 | 75.0 | 72.0 | | | 75.09 | | 75.1 | | 74.9 | 74.9 | 74.9 | | | BF Cross Sectional Area (ft2) | 23.8 | | 22.8 | | 41.1 | 41.2 | 41.3 | | | 29.26 | | 28.1 | | 44.8 | 42.7 | 45.0 | | | BF Mean Depth (ft) | 1.6 | | 1.5 | | 1.8 | 1.7 | 1.8 | | | 1.64 | | 1.6 | | 2.0 | 1.9 | 1.9 | | | BF Max Depth (ft) | 2.3 | 2.4 | 2.3 | | 3.5 | 3.4 | 3.6 | | | 2.65 | 2.8 | | | 3.3 | 3.4 | 3.6 | | | Width/Depth Ratio | 9.7 | 9.9 | 10.0 | | 13.4 | 13.6 | 13.2 | | | 10.83 | | 10.8 | | 11.0 | 11.8 | 12.3 | | | Entrenchment Ratio | 4.9 | 4.9 | | | 3.2 | 3.2 | - | | | 4.22 | 4.3 | | | 3.4 | 3.3 | - | | | Wetted Perimeter (ft) | 18.3 | 18.4 | 18.1 | | 27.0 | 27.1 | 26.9 | | | 21.1 | 21.0 | 20.7 | | 26.3 | 26.2 | 27.3 | | | Hydraulic Radius (ft) | 1.3 | 1.3 | 1.3 | | 1.5 | 1.5 | 1.5 | | | 1.4 | 1.4 | 1.4 | | 1.7 | 1.6 | 1.6 | | | Substrate | | | | | | | | | | | | | | | | | | | d50 (mm) | 45 | 64 | 70 | | 0.2 | < 0.063 | < 0.063 | | | 36 | 40 | 63 | | < 0.063 | 0.08 | < 0.063 | | | d84 (mm) | 85 | 145 | 140 | | 0.45 | 0.24 | 0.3 | | | 72 | 110 | 120 | | 0.7 | 5 | 0.45 | | | II. Reachwide Parameters | | MY-1 (2 | | | MY-2 | ` / | | | | 3 (2009) | | | MY-4 (201 | | | MY-5 (| • | | | Min | Max | Med | Min | Max | N | l ed | Min | Max | Med | i | Min | Max | Med | Min | Max | Med | | Pattern | | | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | | Radius of Curvature (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | | Meander Wavelength (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | | Meander Width Ratio | - | - | - | - | - | | - | - | - | - | | | | | | | | | Profile | | | | | | | | | | | | | | | | | | | Riffle length (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | | Riffle Slope (ft/ft) | - | - | - | 0.009 | 0.02 | 0. | .01 | 0.01 | 0.01 | 0.0 | 1 | | | | | | | | Pool Length (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | | Pool Spacing (ft) | - | - | - | 72 | 144 | 1 | 15 | 67 | 146 | 114 | 1 | | | | | | | | | | | | | | | | - | - | - | | | | | | | | | Additional Reach Parameters | | | | | | | | - | - | - | | | | | | | | | Valley Length (ft) | 2370 | - | - | 2370 | - | | - | 2370 | - | - | | | | | | | | | Channel Length (ft) | 3021 | - | - | 3023 | - | | - | 3000 | - | - | | | | | | | | | Sinuosity | 1.3 | - | - | 1.3 | - | | - | 1.3 | - | - | | | | | | | | | Water Surface Slope (ft/ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | | BF Slope (ft/ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | | Rosgen Classification | С | - | - | C | - | | - | C/E | - | - | | | | | | | | | | | | | Beaverdam | Creek Re | storatio | n Site : 1 | Project | No. D0: | 5016-1 | | | | | | | |-------------------------------|------|---------|-------------------|-----------|-----------|----------|-------------------|----------|----------|--------|------|---------------------|------|---------|-------------------|---------| | | | | | Reach: 1 | Beaverdan | n Creek | UT1 (R | eaches 2 | 2-5) con | ıt'd | | | | | | | | I. Cross-Section Parameters | | | Section 1
Pool | 3 | | | Section
Riffle | 14 | | | | Section 15
iffle | | | Section :
Pool | 16 | | | MY1 | MY2 | MY3 N | MY4 MY5 | MY1 | MY2 | MY3 | MY4 | MY5 | MY1 | MY2 | MY3 MY4 MY5 | MY1 | MY2 | MY3 | MY4 MY5 | | Dimension | | | | | | | | | | | | | | | | | | BF Width (ft) | 30.0 | 28.6 | 27.0 | | 19.1 | 20.2 | 21.4 | | | 26.9 | 26.0 | 26.0 | 20.9 | 21.6 | 22.6 | | | Floodprone Width (ft) | 90.9 | 90.9 | 90.9 | | 75.2 | 75.2 | 73.5 | | | 77.9 | 78.0 | 77.7 | 52.1 | 52.1 | 47.9 | | | BF Cross Sectional Area (ft2) | 71.7 | 77.6 | 69.2 | | 37.9 | 39.4 | 42.7 | | | 59.7 | 62.4 | 54.0 | 36.8 | 45.2 | 47.1 | | | BF Mean Depth (ft) | 2.4 | 2.7 | 2.6 | | 2.0 | 2.0 | 2.0 | | | 2.2 | 2.4 | 2.1 | 1.8 | 2.1 | 2.1 | | | BF Max Depth (ft) | 5.3 | 6.6 | 6.1 | | 3.1 | 3.3 | 3.5 | | | 4.1 | 4.7 | 2.7 | 3.4 | 3.7 | 3.8 | | | Width/Depth Ratio | 12.6 | 10.6 | 10.5 | | 9.6 | 10.3 | 10.7 | | | 12.1 | 10.8 | 12.5 | 11.8 | 10.3 | 10.8 | | | Entrenchment Ratio | 3.0 | 3.2 | - | | 3.9 | 3.7 | 3.4 | | | 2.9 | 3.0 | 3.0 | 2.5 | 2.4 | - | | | Wetted Perimeter (ft) | 34.8 | 34.1 | 32.1 | | 23.1 | 24.1 | 25.4 | | | 31.3 | 30.8 | 30.1 | 24.4 | 25.8 | 26.8 | | | Hydraulic Radius (ft) | 2.1 | 2.3 | 2.2 | | 1.6 | 1.6 | 1.7 | | | 1.9 | 2.0 | 1.8 | 1.5 | 1.8 | 1.8 | | | Substrate | | | | | | | | | | | | | | | | | | d50 (mm) | 0.3 | 0.1 | 0.06 | | 30 | 0.4 | 0.26 | | | - | 0.4 | 0.33 | - | < 0.063 | <
0.063 | | | d84 (mm) | 0.8 | 0.4 | 0.36 | | 70 | 50 | 20 | | | - | 1.0 | 0.55 | - | 0.2 | 0.09 | | | | | | | Reach: 1 | Beaverdar | n Creek | UT1 (R | eaches 2 | 2-5) con | ıt'd | | | | | | | | | | Cross S | Section 1 | 7 | | Cross | Section | 18 | | | | | | | | | | I. Cross-Section Parameters | | F | Pool | | | I | Riffle | | | | | | | | | | | | MY1 | MY2 | MY3 N | MY4 MY5 | MY1 | MY2 | MY3 | MY4 | MY5 | | | | | | | | | Dimension | | | | | | | | | | | | | | | | | | BF Width (ft) | 27.0 | 23.3 | 24.5 | | 22.5 | 23.4 | 22.7 | | | | | | | | | | | Floodprone Width (ft) | 67.2 | 67.2 | 67.4 | | 80.7 | 80.6 | 80.7 | | | | | | | | | | | BF Cross Sectional Area (ft2) | 33.2 | 36.1 | 28.1 | | 34.7 | 34.8 | 33.8 | | | | | | | | | | | BF Mean Depth (ft) | 1.2 | 1.6 | 1.2 | | 1.5 | 1.5 | 1.5 | | | | | | | | | | | BF Max Depth (ft) | 2.5 | 4.4 | 3.1 | | 2.7 | 2.7 | 2.8 | | | | | | | | | | | Width/Depth Ratio | 21.9 | 15.1 | 21.3 | | 14.6 | 15.7 | 15.2 | | | | | | | | | | | Entrenchment Ratio | 2.5 | 2.9 | - | | 3.6 | 3.5 | 3.6 | | | | | | | | | | | Wetted Perimeter (ft) | 29.5 | 26.4 | 26.8 | | 25.6 | 26.4 | 25.7 | | | | | | | | | | | Hydraulic Radius (ft) | 1.1 | 1.4 | 1.0 | | 1.4 | 1.3 | 1.3 | | | | | | | | | | | Substrate | | | | | | | | | | | | | | | | | | d50 (mm) | - | 0.3 | 0.26 | | - | 22 | 32 | | | | | | | | | | | d84 (mm) | - | 0.8 | 0.57 | | - | 45 | 45 | | | | | | | | | | | | | В | eaverdam C | reek Re | storation | Site : Pr | oject No | . D0501 | 6-1 | | | | | | | |-------------------------------|------|---------|------------|---------|-----------|-----------|-------------|---------|--------|-------|-----|---------|-------|---------|--------| | | | | | | Beaverdan | | | | | | | | | | | | | | Cross | Section 3 | | | Cross | Section | 4 | | | | | | | | | I. Cross-Section Parameters | | F | Pool | | | I | Riffle | | | | | | | | | | | MY1 | MY2 | MY3 MY | 4 MY5 | MY1 | MY2 | MY3 | MY4 | MY5 | | | | | | | | Dimension | | | | | | | | | | | | | | | | | BF Width (ft) | 15.3 | 14.8 | 13.9 | | 11.8 | 11.1 | 10.8 | | | | | | | | | | Floodprone Width (ft) | 75.1 | 75.1 | 75.1 | | 75.0 | 75.0 | 75.0 | | | | | | | | | | BF Cross Sectional Area (ft2) | 16.4 | 19.4 | 16.3 | | 16.5 | 15.6 | 14.1 | | | | | | | | | | BF Mean Depth (ft) | 1.1 | 1.3 | 1.2 | | 1.4 | 1.4 | 1.3 | | | | | | | | | | BF Max Depth (ft) | 2.3 | 3.0 | 2.7 | | 2.3 | 2.4 | 2.4 | | | | | | | | | | Width/Depth Ratio | 14.3 | 11.4 | 11.9 | | 8.5 | 7.9 | 8.3 | | | | | | | | | | Entrenchment Ratio | 4.9 | 5.1 | - | | 6.3 | 6.8 | 6.9 | | | | | | | | | | Wetted Perimeter (ft) | 17.5 | 17.4 | 16.2 | | 14.6 | 13.9 | 13.4 | | | | | | | | | | Hydraulic Radius (ft) | 0.9 | 1.1 | 1.0 | | 1.1 | 1.1 | 1.1 | | | | | | | | | | Substrate | | | | | | | | | | | | | | | | | d50 (mm) | 0.16 | 0.14 | 0.1 | | < 0.063 | 0.11 | < 0.063 | | | | | | | | | | d84 (mm) | 0.42 | 0.5 | 0.38 | | 0.2 | 0.3 | 0.13 | | | | | | | | | | | | MY-1 (2 | 2007) | | MY-2 | (2008) | | N | 1Y-3 (| 2009) | N | 1Y-4 (2 | 2010) | MY-5 | (2011) | | II. Reachwide Parameters | Min | Max | Med | Min | Max | | 1 ed | 4 | Max | Med | Min | | Med | Min Max | Med | | Pattern | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | Radius of Curvature (ft) | - | _ | - | - | - | | - | - | - | - | | | | | | | Meander Wavelength (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | Meander Width Ratio | - | _ | - | - | - | | - | - | - | - | | | | | | | Profile | | | | | | | | | | | | | | | | | Riffle length (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | Riffle Slope (ft/ft) | - | - | - | - | - | | - | - | - | - | | | | | | | Pool Length (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | Pool Spacing (ft) | - | - | - | - | - | | - | - | - | - | Additional Reach Parameters | | | | | | | | | | | | | | | | | Valley Length (ft) | 680 | - | - | - | - | | - | - | - | - | | | | | | | Channel Length (ft) | 775 | - | - | - | - | | - | - | - | - | | | | | | | Sinuosity | 1.1 | - | - | - | - | | - | - | - | - | | | | | | | Water Surface Slope (ft/ft) | - | - | - | - | - | | - | - | - | - | | | | | | | BF Slope (ft/ft) | - | - | - | - | - | | - | - | - | - | | | | | | | Rosgen Classification | C | - | - | C | - | | - | C/E | - | - | | | | | | | | | Bea | verdan | ı Cree | k Rest | oration S | ite : Pro | ject No | o. D050 | 016-1 | | | | | | | | |-------------------------------|------|--------|---------|--------|--------|-----------|-----------|---------|---------|---------|-------|-----|---------|-------|-----|---------|------| | | | | | | | averdam | | | | | | | | | | | | | | | Cross | Section | ı 8 | | | | | | | | | | | | | | | I. Cross-Section Parameters | | Riffle | | | | |] | Pool | | | | | | | | | | | | MY1 | MY2 | MY3 | MY4 | MY5 | MY1 | MY2 | MY3 | MY4 | MY5 | | | | | | | | | Dimension | | | | | | | | | | | | | | | | | | | BF Width (ft) | 12.0 | 13.2 | 12.0 | | | 13.6 | 12.4 | 13.8 | | | | | | | | | | | Floodprone Width (ft) | 70.6 | 71.2 | 71.1 | | | 75.0 | 75.0 | 74.9 | | | | | | | | | | | BF Cross Sectional Area (ft2) | 8.8 | 9.5 | 8.6 | | | 31.6 | 30.3 | 31.6 | | | | | | | | | | | BF Mean Depth (ft) | 0.7 | 0.7 | 0.7 | | | 2.3 | 2.4 | 2.3 | | | | | | | | | | | BF Max Depth (ft) | 1.1 | 1.1 | 1.1 | | | 3.2 | 3.2 | 3.1 | | | | | | | | | | | Width/Depth Ratio | 16.5 | 18.4 | 16.9 | | | 5.9 | 5.1 | 6.0 | | | | | | | | | | | Entrenchment Ratio | | 5.4 | 5.9 | | | 5.5 | 6.0 | - | | | | | | | | | | | Wetted Perimeter (ft) | 13.5 | 14.6 | 13.5 | | | 18.2 | 17.3 | 18.4 | | | | | | | | | | | Hydraulic Radius (ft) | 0.7 | 0.6 | 0.6 | | | 1.7 | 1.7 | 1.7 | | | | | | | | | | | Substrate | | | | | | | | | | | | | | | | | | | d50 (mm) | 42 | 64 | 60 | | | < 0.063 | < 0.063 | 0.08 | | | | | | | | | | | d84 (mm) | 75 | 110 | 130 | | | 0.23 | 0.17 | 0.22 | | | | | | | | | | | H D 1 11 D 4 | | MY-1 | (2007) | | | MY-2 | (2008) | | N | MY-3 (2 | 2009) | M | IY-4 (2 | (010) | N | IY-5 (2 | 011) | | II. Reachwide Parameters | Min | Max | M | ed | Min | Max | M | ed | Min | Max | Med | Min | Max | Med | Min | Max | Med | | Pattern | | | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | - | - | - | - | - | - | - | | - | - | - | | | | | | | | Radius of Curvature (ft) | - | - | - | - | - | - | - | | - | - | - | | | | | | | | Meander Wavelength (ft) | - | - | - | - | - | - | - | | - | - | - | | | | | | | | Meander Width Ratio | - | - | - | - | - | - | - | | - | - | - | | | | | | | | Profile | | | | | | | | | | | | | | | | | | | Riffle length (ft) | - | - | - | - | - | - | - | | - | - | - | | | | | | | | Riffle Slope (ft/ft) | - | - | - | - | - | - | - | | - | - | - | | | | | | | | Pool Length (ft) | - | - | - | - | - | - | - | | - | - | - | | | | | | | | Pool Spacing (ft) | - | - | - | - | - | - | - | - | - | - | - | Additional Reach Parameters | | | | | | | | | | | | | | | | | | | Valley Length (ft) | 544 | - | - | - | - | - | - | | - | - | - | | | | | | | | Channel Length (ft) | 615 | - | - | - | - | - | - | | - | - | - | | | | | | | | Sinuosity | 1.1 | - | - | - | - | - | - | - | - | - | - | | | | | | | | Water Surface Slope (ft/ft) | - | - | - | - | - | - | - | - | - | - | - | | | | | | | | BF Slope (ft/ft) | - | - | - | - | - | - | - | - | - | - | - | | | | | | | | Rosgen Classification | C | - | - | - | C | - | - | - | C | - | - | | | | | | | | | | Beave | rdam (| Creek | Restor | ation S | Site : F | roject | No. D | 05016- | 1 | | | | | | | |-------------------------------|-------------|-------|-----------|-------|--------|---------|----------|--------|--------|--------|-----|-------------|-----|-----|-------------|-----|-----| | | | | | | | | | dT1I | | | | | | | | | | | | | Cros | s Section | on 12 | | | | | | | | | | | | | | | I. Cross-Section Parameters | Pool | | | | | | | Riffle | | | | | | | | | | | | MY1 | MY2 | MY3 | MY4 | MY5 | MY1 | MY2 | MY3 | MY4 | MY5 | | | | | | | | | Dimension | | | | | | | | | | | | | | | | | | | BF Width (ft) | | 15.1 | 20.1 | | | 12.7 | 11.4 | 13.1 | | | | | | | | | | | Floodprone Width (ft) | | 75.6 | 75.2 | | | 75.5 | 75.5 | 75.3 | | | | | | | | | | | BF Cross Sectional Area (ft2) | 20.9 | 18.9 | 16.1 | | | 9.2 | 9.0 | 8.6 | | | | | | | | | | | BF Mean Depth (ft) | 1.4 | 1.3 | 0.8 | | | 0.7 | 0.8 | 0.7 | | | | | | | | | | | BF Max Depth (ft) | 2.5 | 2.2 | 1.8 | | | 1.1 | 1.1 | 1.1 | | | | | | | | | | | Width/Depth Ratio | 11.3 | 12.0 | 25.0 | | | 17.5 | 14.4 | 19.9 | | | | | | | | | | | Entrenchment Ratio | 3.4 | 5.0 | - | | | 6.0 | 6.6 | 5.8 | | | | | | | | | | | Wetted Perimeter (ft) | 18.0 | 17.6 | 21.7 | | | 14.1 | 13.0 | 14.4 | | | | | | | | | | | Hydraulic Radius (ft) | 1.2 | 1.1 | 0.7 | | | 0.7 | 0.7 | 0.6 | | | | | | | | | | | Substrate | | | | | | | | | | | | | | | | | | | d50 (mm) | < 0.063 | 0.33 | 0.3 | | | 43 | 38 | 26 | | | | | | | | | | | d84 (mm) | 0.22 | 0.85 | 0.43 | | | 85 | 60 | 50 | | | | | | | | | | | H. Dandarila Danamatana | MY-1 (2007) | | | | MY-2 | (2008) | | 1 | MY-3 (| 2009) | N | MY-4 (2010) | | | MY-5 (2011) | | | | II. Reachwide Parameters | Min | Max | M | ed | Min | Max | M | ed | Min | Max | Med | Min | Max | Med | Min | Max | Med | | Pattern | | | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | - | - | | - | - | - | | - | - | - | - | | | | | | | | Radius of Curvature (ft) | - | - | | - | - | - | | - | - | - | - | | | | | | | | Meander Wavelength (ft) | - | - | | | - | - | | - | - | - | - | | | | | | | | Meander Width Ratio | - | - | | | - | - | | - | - | - | - | | | | | | | | Profile | | | | | | | | | | | | | | | | | | | Riffle length (ft) | - | - | | - | - | - | | - | - | - | - | | | | | | | | Riffle Slope (ft/ft) | - | - | | | - | - | | - | - | - | - | | | | | | | | Pool Length (ft) | - | - | - | - | - | - | | - | - | - | - | | | | | | | | Pool Spacing (ft) | - | - | - | - | - | - | | - | - | - | - | | | | | | | | Additional Reach Parameters | | | | | | | | | | | | |
| | | | | | Valley Length (ft) | 300 | _ | | _ | | _ | | | _ | _ | _ | | | | | | | | Channel Length (ft) | 334 | - | | | I - | _ | | | | - | _ | | | | | | | | Sinuosity | 1.1 | _ | | _ | | _ | | | | _ | _ | | | | | | | | Water Surface Slope (ft/ft) | | - | | | | _ | | _ | | - | _ | | | | | | | | BF Slope (ft/ft) | | _ | | | | _ | | | _ | _ | _ | | | | | | | | Rosgen Classification | C | _ | | _ | C | _ | | _ | C | _ | _ | | | | | | | | Rosgen Classification | С | - | | - | С | - | | - | С | - | - | | | | | | | | | | | Beaverda | m Cree | k Restorat | ion Site : I | Project No | o. D050 | 16-1 | | | | | | | | |-------------------------------|------|-------------|-------------|-------------|------------|--------------|-------------|---------|------|-----|---------|-------|-----|--------|------|-----| | Reach: Beaverdam Creek UT2A | Cros | s Section 1 | | | Cross | Section 2 | | | | | | | | | | | I. Cross-Section Parameters | | | Riffle | | | F | ool | | | | | | | | | | | | MY1 | MY2 | MY3 MY4 | MY5 | MY1 | MY2 | MY3 | MY4 | MY5 | | | | | | | | | Dimension | | | | | | | | | | | | | | | | | | BF Width (ft) | 12.2 | 13.4 | 12.6 | | 20.1 | 20.6 | 19.2 | | | | | | | | | | | Floodprone Width (ft) | 39.8 | 39.9 | 39.9 | | 40.0 | 40.0 | 40.0 | | | | | | | | | | | BF Cross Sectional Area (ft2) | 9.6 | 10.4 | 9.1 | | 20.4 | 21.3 | 17.8 | | | | | | | | | | | BF Mean Depth (ft) | 0.8 | 0.8 | 0.7 | | 1.0 | 1.0 | 0.9 | | | | | | | | | | | BF Max Depth (ft) | 1.1 | 1.2 | 1.0 | | 1.9 | 2.2 | 1.8 | | | | | | | | | | | Width/Depth Ratio | 15.5 | 17.2 | 17.4 | | 19.8 | 19.9 | 20.7 | | | | | | | | | | | Entrenchment Ratio | 3.3 | 3.0 | 3.2 | | 2.0 | 1.9 | - | | | | | | | | | | | Wetted Perimeter (ft) | 13.7 | 15.0 | 14.0 | | 22.1 | 22.7 | 21.1 | | | | | | | | | | | Hydraulic Radius (ft) | 0.7 | 0.7 | 0.6 | | 0.9 | 0.9 | 0.8 | | | | | | | | | | | Substrate | | | | | | | | | | | | | | | | | | d50 (mm) | 35 | 40 | 42 | | < 0.063 | < 0.063 | < 0.063 | | | | | | | | | | | d84 (mm) | 53 | 60 | 57 | | < 0.063 | < 0.063 | < 0.063 | | | | | | | | | | | II. Reachwide Parameters | | MY-1 (2007) | | MY-2 (2008) | | | MY-3 (2009) | | |] | MY-4 (2 | 2010) | M | Y-5 (2 | 011) | | | 11. Reactivide 1 at affecters | Min | Max | Med | Min | Max | M | ed | Min | Max | Med | Min | Max | Med | Min 1 | Лaх | Med | | Pattern | | | | | | | | | | | | | | | | | | Channel Beltwidth (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | Radius of Curvature (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | Meander Wavelength (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | Meander Width Ratio | - | - | - | - | - | | - | - | - | - | | | | | | | | Profile | | | | | | | | | | | | | | | | | | Riffle length (ft) | - | - | - | - | - | | - | - | - | - | | | | | | | | Riffle Slope (ft/ft) | | - | - | - | - | | - | - | - | - | | | | | | | | Pool Length (ft) | | - | - | - | - | | - | - | - | - | | | | | | | | Pool Spacing (ft) | - | - | - | - | - | | - | - | - | - | Additional Reach Parameters | | | | | | | | | | | | | | | | | | Valley Length (ft) | | - | - | - | - | | - | - | - | - | | | | | | | | Channel Length (ft) | | - | - | - | - | | - | - | - | - | | | | | | | | Sinuosity | 1.2 | - | - | - | - | | - | - | - | - | | | | | | | | Water Surface Slope (ft/ft) | | - | - | - | - | | - | - | - | - | | | | | | | | BF Slope (ft/ft) | | - | - | - | - | | - | - | - | - | | | | | | | | Rosgen Classification | C | - | - | C | - | | - | C | - | - | | | | | | | | | | | Be | averdam (| Creek Res | toration S | Site : Pro | ject No | . D050 | 016-1 | | | | | | | | | |-------------------------------|--------|------|-----------|-----------|-----------|------------|------------|---------|--------|--------|--------|---------|------------|---------|---------|---------|---------|--| | | | | | | Reach: B | | | | | | | | | | | | | | | | | Cros | s Section | 3 | | Cross | Section 4 | 4 | | | Cros | s Secti | ion 5 | | Cross | Section | 6 | | | I. Cross-Section Parameters | Riffle | | | Pool | | | | | | | Riffle | | | Pool | | | | | | | MY1 | MY2 | MY3 N | MY4 MY5 | MY1 | MY2 | MY3 | MY4 | MY5 | MY1 | MY2 | MY3 | MY4 MY5 | MY1 | MY2 | MY3 | MY4 MY5 | | | Dimension | BF Width (ft) | 16.1 | 17.3 | 17.1 | | 20.9 | 20.8 | 19.8 | | | 16.6 | 16.2 | 17.0 | | 14.0 | 14.4 | 14.7 | | | | Floodprone Width (ft) | 40.0 | 40.0 | 40 | | 40.1 | 40.1 | 40.2 | | | 39.9 | 39.9 | 39.8 | | 28.0 | 28.8 | 29.7 | | | | BF Cross Sectional Area (ft2) | 10.9 | 11.2 | 11.2 | | 25.8 | 25.1 | 22.9 | | | 22.6 | 21.4 | 23.4 | | 23.2 | 24.9 | 25.8 | | | | BF Mean Depth (ft) | 0.7 | 0.7 | 0.7 | | 1.2 | 1.2 | 1.2 | | | 1.4 | 1.3 | 1.4 | | 1.7 | 1.7 | 1.8 | | | | BF Max Depth (ft) | 1.1 | 1.1 | 1.0 | | 2.5 | 2.5 | 2.3 | | | 1.9 | 1.9 | 2.1 | | 2.6 | 2.6 | 2.7 | | | | Width/Depth Ratio | 23.9 | 26.6 | 25.9 | | 16.9 | 17.3 | 17.1 | | | 12.2 | 12.3 | 12.4 | | 8.5 | 8.4 | 8.4 | | | | Entrenchment Ratio | 2.5 | 2.3 | 2.3 | | 1.9 | 1.9 | - | | | 2.4 | 2.5 | 2.3 | | 2.0 | 2.0 | - | | | | Wetted Perimeter (ft) | 17.5 | 18.6 | 18.4 | | 23.4 | 23.3 | 22.1 | | | 19.4 | 18.8 | 19.7 | | 17.3 | 17.9 | 18.2 | | | | Hydraulic Radius (ft) | 0.6 | 0.6 | 0.6 | | 1.1 | 1.1 | 1.0 | | | 1.2 | 1.1 | 1.2 | | 1.3 | 1.4 | 1.4 | | | | Substrate | d50 (mm) | 39 | 40 | 38 | | < 0.063 | < 0.063 | < 0.063 | | | 38 | 36 | 38 | | < 0.063 | < 0.063 | 0.06 | | | | d84 (mm) | 59 | 64 | 58 | | < 0.063 | < 0.063 | < 0.063 | | | 59 | 60 | 45 | | < 0.063 | < 0.063 | 0.16 | | | | | | MY-1 | (2007) | | MY- | 2 (2008) | | | MY-3 | (2009) | | | MY-4 (2010 | | | MY-5 (2 | 011) | | | II. Reachwide Parameters | Min | Max | Med | l Min | Max | | led | Min | Max | | ed | Min | • | Med | Min | Max | Med | | | Pattern | Channel Beltwidth (ft) | _ | _ | _ | _ | - | | _ | _ | _ | | _ | | | | | | | | | Radius of Curvature (ft) | _ | _ | - | _ | _ | | _ | _ | _ | | _ | | | | | | | | | Meander Wavelength (ft) | _ | _ | _ | _ | - | | _ | - | _ | | _ | | | | | | | | | Meander Width Ratio | _ | _ | - | _ | _ | | _ | _ | _ | | _ | | | | | | | | | Profile | Riffle length (ft) | _ | _ | _ | _ | _ | | _ | _ | _ | | _ | | | | | | | | | Riffle Slope (ft/ft) | _ | _ | _ | _ | _ | | _ | _ | _ | | _ | | | | | | | | | Pool Length (ft) | _ | _ | _ | _ | _ | | _ | _ | _ | | _ | | | | | | | | | Pool Spacing (ft) | | _ | _ | _ | _ | | _ | _ | _ | | _ | | | | | | | | | r oor spacing (ii) | Additional Reach Parameters | Valley Length (ft) | 2470 | _ | _ | _ | _ | | _ | _ | _ | | _ | | | | | | | | | Channel Length (ft) | | _ | _ | _ | _ | | _ | _ | _ | | _ | | | | | | | | | Sinuosity | 1.3 | _ | _ | | _ | | _ | | _ | | _ | | | | | | | | | Water Surface Slope (ft/ft) | 1.3 | _ | _ | | _ | | _ | | _ | | _ | | | | | | | | | BF Slope (ft/ft) | | _ | _ | | _ | | _ | | _ | | | | | | | | | | | Rosgen Classification | | - | - | C | - | | _ | C | - | | _ | | | | | | | | | Rosgen Ciassification | C | | | C | | | | C | | | - | | | | | | | |